论文部分内容阅读
《新课标》要求在小学数学教学中要着重培养学生良好的思维品质。因此,在教学中教师应积极探究以培养学生创新意识为目标的教学方法。在完成教学大纲所规定的教学任务的前提下,依据教材中相同、相似或相反的知识因素,或具有某种内在联系的知识,引导学生经过联想、类比、求同、求异等多种思维方式,培养学生创造性思维方法和创造思维能力。
一、选准知识点,营造创造性思维的情境
马克思曾经说过“激情、热情是人强烈追求自己对象的本质力量。”所以,教师在课堂教学中,要注意运用具体事例,去激发学生的求知欲,为学生创设乐学的情境。教学中要使学生既长知识,又长智慧,一定要遵循学生的认知规律,重视学生获取知识的思维过程。
如教学“圆的认识”时可以这样进行:“同学们,我们平时所见的车轮都是什么样的?”学生会肯定地回答:“都是圆形的”。“方的行不行?”“那怎么行,方的怎么滚动啊?”“这样的行吗?”教师随手在黑板上画一椭圆形问。“也不行,颠得厉害。”教师再问:“为什么圆的就行了呢?”当学生积极思考时,教师揭示课题:这节课,我们就来学习解决这个问题的方法。同时板书:圆的认识。这样,一石激起千层浪,短短几句话,就调动起学生积极探求知识的动力,激起学生学习的情感,使学生一上课就进入学习的最佳状态,取得事半功倍的效果。
二、巧用原例题,激发学生创造性思维意识
素质教育的核心是创新,培养学生思维的个性化、多元化。课堂教学是素质教育的主渠道,挖掘教材中蕴含的有利于进行创造性思维训练的知识点,指导学生学会发现问题,激发学生解决问题的强烈欲望。培养学生创造性思维意识过程可归纳为:
1.创设情境:教师对现行教材进行认真分析,整理出那些有利于训练学生创造思维方法和创造思维能力的知识点,并在教学中营造出一种宽松和谐的、师生密切交往的教学氛围。
2.建立假设:精心设计教案,适时引出假设,确定解决问题的方向。
3.分析、酝酿、综合:分析材料,酝酿思路,提出新的想法。
4.验证、求得新知:采用其它方法验证结论是否正确。例如,学生在掌握圆柱的体积计算方法后,利用原例题,变原有条件为“把一个直径20厘米的圆柱,沿底面直径从上到下分成若干等份,然后拼接成一个和它体积相等的长方体,这个长方体的表面积比原来的圆柱表面积增加7平方厘米,长方体的体积是多少?”此例为学生提供了一个真实的经验情境。学生通过观察会发现,圆柱变形后,新形体和原形体等积;新形体的长恰好是圆柱底面周长的1/2,新增表面积7平方厘米正好是圆柱体变形后所得长方体左右面面积之和。如此分析探究之后,学生很快会得出这个长方体(即变形前圆柱体)体积为“长方体左(右)面积×长方体的长”。此时学生的思维方向很明确,且面对足够的思维空间,具有进行迁移思维的良好氛围,适合不同思维水平的学生思考。因为长方体左(右)面积=圆柱的底面半径(r)×圆柱的高(h)=hr,长方体的长=1/2圆周长=πr。所以,圆柱体变形后得到的新的长方体的体积为“长方体左(右)面积×1/2圆周长,即“hr·πr”,整理后得V=πr2·h。通过上述思维活动加深了学生对圆柱体计算公式推导过程的理解,锻炼了学生思维的独立性与敏捷性,创造性地应用己有知识解决了新问题。
三、举一反三,培养学生思维的创造性
教师应掌握归纳问题的策略,在众多问题中,如能筛选提炼出适合学生研究的、有助于学生自己探究、思考的问题,将对学生的自学产生关键作用。由于学生的认知结构、理解能力处于不同的层次,知识的获得并非一次到位,可根据教学内容再组织一次实践,培养学生思维的广阔性与深刻性。
练习的设计要有层次、有梯度,难易适度。例如,学生学习了按比例分配的知识,完成了一定数量的基本习题后,教师出示习题一:已知一个长方形周长是18厘米,长与宽的比是5:4,求这个长方形的面积?学生往往将周长和按5:4分配所得的数值误认为是长方形长与宽的值。此时教师应启发学生思考按5:4分配长与宽与长方形的周长有什么关系?这样激活学生的思维点,使学生懂得按一定的比例分配是以它特定的、相对应的数量为前提的,从而加深学生对比例分配知识的理解。
在此基础上教师出示习题二:一个长方体长、宽、高的比是5:4:2,它们的棱长和是44厘米,请你计算出这个长方体的体积。由于学生的思维点已被激活,他们将会进行较为缜密的思考、推理,最终寻得正确的解题方案。这一学习过程,无疑是引导学生进行了一次创造性思维的有益尝试。上述教学环节的设计,目的在于学生通过动手、动脑、动口,采用观察比较、分析归纳、假设演绎等学习手段,由具体到抽象,由特殊到一般,归纳总结出较为完善的知识,促使学生全面理解、融会贯通,培养学生初步的逻辑思维能力,促进学生思维品质的提高。
在小学数学教学中,重视对学生创造思维能力的培养,这是时代的要求。教师要认真挖掘教材中的创造思维因素,精心设计教学过程,促使学生的创造思维能力不断得到发展和提高。
一、选准知识点,营造创造性思维的情境
马克思曾经说过“激情、热情是人强烈追求自己对象的本质力量。”所以,教师在课堂教学中,要注意运用具体事例,去激发学生的求知欲,为学生创设乐学的情境。教学中要使学生既长知识,又长智慧,一定要遵循学生的认知规律,重视学生获取知识的思维过程。
如教学“圆的认识”时可以这样进行:“同学们,我们平时所见的车轮都是什么样的?”学生会肯定地回答:“都是圆形的”。“方的行不行?”“那怎么行,方的怎么滚动啊?”“这样的行吗?”教师随手在黑板上画一椭圆形问。“也不行,颠得厉害。”教师再问:“为什么圆的就行了呢?”当学生积极思考时,教师揭示课题:这节课,我们就来学习解决这个问题的方法。同时板书:圆的认识。这样,一石激起千层浪,短短几句话,就调动起学生积极探求知识的动力,激起学生学习的情感,使学生一上课就进入学习的最佳状态,取得事半功倍的效果。
二、巧用原例题,激发学生创造性思维意识
素质教育的核心是创新,培养学生思维的个性化、多元化。课堂教学是素质教育的主渠道,挖掘教材中蕴含的有利于进行创造性思维训练的知识点,指导学生学会发现问题,激发学生解决问题的强烈欲望。培养学生创造性思维意识过程可归纳为:
1.创设情境:教师对现行教材进行认真分析,整理出那些有利于训练学生创造思维方法和创造思维能力的知识点,并在教学中营造出一种宽松和谐的、师生密切交往的教学氛围。
2.建立假设:精心设计教案,适时引出假设,确定解决问题的方向。
3.分析、酝酿、综合:分析材料,酝酿思路,提出新的想法。
4.验证、求得新知:采用其它方法验证结论是否正确。例如,学生在掌握圆柱的体积计算方法后,利用原例题,变原有条件为“把一个直径20厘米的圆柱,沿底面直径从上到下分成若干等份,然后拼接成一个和它体积相等的长方体,这个长方体的表面积比原来的圆柱表面积增加7平方厘米,长方体的体积是多少?”此例为学生提供了一个真实的经验情境。学生通过观察会发现,圆柱变形后,新形体和原形体等积;新形体的长恰好是圆柱底面周长的1/2,新增表面积7平方厘米正好是圆柱体变形后所得长方体左右面面积之和。如此分析探究之后,学生很快会得出这个长方体(即变形前圆柱体)体积为“长方体左(右)面积×长方体的长”。此时学生的思维方向很明确,且面对足够的思维空间,具有进行迁移思维的良好氛围,适合不同思维水平的学生思考。因为长方体左(右)面积=圆柱的底面半径(r)×圆柱的高(h)=hr,长方体的长=1/2圆周长=πr。所以,圆柱体变形后得到的新的长方体的体积为“长方体左(右)面积×1/2圆周长,即“hr·πr”,整理后得V=πr2·h。通过上述思维活动加深了学生对圆柱体计算公式推导过程的理解,锻炼了学生思维的独立性与敏捷性,创造性地应用己有知识解决了新问题。
三、举一反三,培养学生思维的创造性
教师应掌握归纳问题的策略,在众多问题中,如能筛选提炼出适合学生研究的、有助于学生自己探究、思考的问题,将对学生的自学产生关键作用。由于学生的认知结构、理解能力处于不同的层次,知识的获得并非一次到位,可根据教学内容再组织一次实践,培养学生思维的广阔性与深刻性。
练习的设计要有层次、有梯度,难易适度。例如,学生学习了按比例分配的知识,完成了一定数量的基本习题后,教师出示习题一:已知一个长方形周长是18厘米,长与宽的比是5:4,求这个长方形的面积?学生往往将周长和按5:4分配所得的数值误认为是长方形长与宽的值。此时教师应启发学生思考按5:4分配长与宽与长方形的周长有什么关系?这样激活学生的思维点,使学生懂得按一定的比例分配是以它特定的、相对应的数量为前提的,从而加深学生对比例分配知识的理解。
在此基础上教师出示习题二:一个长方体长、宽、高的比是5:4:2,它们的棱长和是44厘米,请你计算出这个长方体的体积。由于学生的思维点已被激活,他们将会进行较为缜密的思考、推理,最终寻得正确的解题方案。这一学习过程,无疑是引导学生进行了一次创造性思维的有益尝试。上述教学环节的设计,目的在于学生通过动手、动脑、动口,采用观察比较、分析归纳、假设演绎等学习手段,由具体到抽象,由特殊到一般,归纳总结出较为完善的知识,促使学生全面理解、融会贯通,培养学生初步的逻辑思维能力,促进学生思维品质的提高。
在小学数学教学中,重视对学生创造思维能力的培养,这是时代的要求。教师要认真挖掘教材中的创造思维因素,精心设计教学过程,促使学生的创造思维能力不断得到发展和提高。