论文部分内容阅读
提出了一种新的基于遗传算法和误差反向传播的双权值神经网络学习算法,同时确定核心权值、方向权值以及幂参数、学习率等参数,通过适当地调节这些参数,可以实现尽可能多种不同超曲面的特性以及起到加快收敛的效果。并通过对实际的模式分类问题的仿真,将文中的方法与带动量项BP算法、CSFN等算法进行了比较,验证了其有效性。实验结果表明所提出的方法具有分类准确率高、收敛速度快的优点。