基于图像梯度补偿的人脸快速识别算法

来源 :计算机系统应用 | 被引量 : 4次 | 上传用户:h725bin
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对传统人脸识别算法运行效率低的问题,提出一种采用图像梯度补偿模式(IGC)的人脸快速识别算法.首先,提取人脸图像四个方位的梯度;其次,将所获的四个梯度进行多方式融合,产生两个梯度算子;再次,使用新产生的梯度算子对原图像进行适度补偿,形成人脸图像的IGC特征图;然后将所获IGC特征图分块统计直方图,并将各个分块的直方图串联成用于人脸图像描述的特征向量;最后使用PCA方式对特征向量进行降维处理,利用SVM分类器进行识别.在ORL和CMU_PIE数据库上完成测试,结果表明本文算法在具有较高识别率的同时,
其他文献
目前,大部分的车辆结构化信息需要通过多个步骤进行提取,存在模型训练繁琐、各步骤模型训练数据有限和过程误差累加等问题.为此,采用多任务学习将车辆结构化信息提取整合在统一的神经网络之中,通过共享特征提取结构,减少过程误差累加,并构建了一个多任务损失函数用于端到端训练神经网络;针对训练样本有限的问题,提出了新的数据整合和增广方法.在KITTI数据集上实验结果表明, VSENet可以达到93.82%的mA
为了提高高速列车的受流能力,降低离网率,本文以线性二次型最优控制为基础设计了受电弓的主动控制器.针对线性二次型最优控制中权矩阵Q和R的取值问题,采用遗传算法进行优化,
在基于蜂窝通信演进形成的车用无线通信技术(Cellular-Vehicle to everything,C-V2X)场景下,基站作为多接入边缘计算(Multi-access Edge Computing,MEC)边缘缓存节点可提高用
随着互联网的快速发展以及互联网业务、用户数量的不断增多,越来越多的传统单体应用为了方便拓展新业务、增加可复用度,已经选择将业务拆分为多个微服务,这样可便于后期的管
多视图聚类旨在综合利用视图数据中的一致信息和互补信息实现对数据的划分,但各视图表征数据的能力参差不齐,甚至有的视图可能含有大量的冗余和噪声信息,不仅不能带来多样的信息,反而影响聚类性能.本文提出了自适应加权的低秩约束的多视图子空间聚类算法,通过自适应学习的方式给各视图赋予不同权重来构造各视图共享的潜在一致低秩矩阵.并且提出了有效的可迭代优化算法对模型进行优化.在5个公开数据集上的实验结果表明所提算