论文部分内容阅读
高中数学新课程对于学生认识数学与自然界、数学与人类社会的关系,认识数学的科学价值、应用价值、文化价值,提高提出问题、分析问题和解决问题的能力,形成理性思维,发展智力和创新意识具有基础性的作用。如何做一名适应新课改的数学教师,下面谈谈自己的几点粗浅认识:
一、合理创设问题情境,引领学生进入数学的殿堂
新课程中的数学强调数学化、数学情境,数学教育提倡在情境中解决问题,教师要学会创设情境,把教科书的知识转化为问题,引导学生探究,帮助学生自己建构知识。一堂生动活泼的具有教学艺术魅力的好课犹如一支婉转悠扬的乐曲,“起调”扣人心弦,“主旋律”引人入胜,“终曲”余音绕梁.其中“起调”起着关键性的作用,这就要求教师善于在课始阶段设计一个好的教学情境,引领学生进入数学的殿堂,展开思维的翅膀,开启智慧的大门。
例如对于课本例题:“求函数的单调区间”的学习,在学生们具备了一定的知识后,我们对它进行了引伸,设计了如下程序性问题:(1)研究该函数的主要性质;(2)设计做出其图像的方案,并找出其图像的特征;(3)分别做出该函数的图像,并概括规律;(4)请同学找出一个具有此类函数模型的实际问题,并予以解决,问题呈现在学生面前以后,同学们情绪高昻,思维活跃,积极动手动脑,相互交流研究,第一个问题解决的比较顺利,第二个问题则显示出了较大的差异,第三个问题的结果丰富多彩。最后在老师的引导下,问题获得了圆满的解决。同学们也感受到了成功的喜悦,这里与传统的教学方法相比较,最大的区别就在于学生们主动的参与了获取知识的全过程。
二、充分关注学生课堂表现,激发学习兴趣,调动学习积极性,体现学生的主体地位
在教学过程中,教师要随时了解学生对所讲内容的掌握情况。如在讲完一个概念后,让学生复述;讲完一个例题后,将解答擦掉,请中等水平学生上台板演。有时,对于基础差的学生,可以对他们多提问,让他们有较多的锻炼机会。同时教师根据学生的表现,及时进行鼓励,培养他们的自信心,让他们能热爱数学,学习数学。
学生是学习的主体,教师要围绕学生展开教学,在教学过程中,自始至终让学生唱主角,使学生变被动学习为主动学习,让学生成为学习的主人,教师成为学习的领路人。根据课堂教学内容的要求,教师要精选例题,关键是讲解例题的时候,要能让学生也参与进来。教师应腾出十来分钟时间或更多的时间,让学生做做练习或思考教师提出的问题,或解答学生的提问,以进一步强化本堂课的教学内容。若课堂内容相对轻松,也可以指导学生进行预习,提出适当的要求,为下一次课做准备。
三、突出知识重点、化解难点仍是课堂教学的关键环节
每一堂课都要有一个重点,而整堂的教学都是围绕这个重点来逐步展开的。为了让学生明确本堂课的重点、难点,教师在上课开始时,可以在黑板的一角将这些内容简短地写出来,以便引起学生的重视。讲授重点内容,是整堂课的教学高潮。教师要通过声音、手势、板书等的变化或应用模型、投影仪等直观教具,刺激学生的大脑,使学生能够兴奋起来,对所学内容在大脑中留下强烈的印象,激发学生的学习兴趣,提高学生对新知识的接受能力。
如讲解《椭圆》第一课时,其教学的重点是掌握椭圆的定义和标准方程,难点是椭圆方程的化简。教师可从太阳、地球、人造地球卫星的运行轨道,谈到圆的直观图、圆萝卜的切片、阳光下圆盘在地面上的影子等等,让学生对椭圆有一个直观的了解。
为了强调椭圆的定义,教师事先准备好一根细线及两根钉子,在给出椭圆在数学上的严格定义之前,教师先在黑板上取两个定点(两定点之间的距离小于细线的长度),再让两名学生按教师的要求在黑板上画一个椭圆。画好后,教师再请刚才两名学生按同样的要求作图。学生通过观察两次作图的过程,总结出经验和教训,教师因势利导,让学生自己得出椭圆的严格的定义。这样,学生对这一定义就会有深刻的了解。
在进一步求标准方程时,学生容易遇到这样一个问题:化简出现了麻烦。这时教师可以适当提示:化简含有根号的式子时,我们通常有什么方法?学生回答:可以两边平方。教师问:是直接平方好还是恰当整理后再平方?学生通过实践,发现对于这个方程,直接平方不利于化简,而整理后再平方,最后能得到圆满的结果。这样,椭圆方程的化简这一难点也就迎刃而解了。同时也解决了以后将要遇到的求双曲线的标准方程时的化简问题。所以在一堂课上,教师要同时使用多种教学方法。“教无定法,贵在得法”。只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的掌握和运用,有利于重点突出、难点化解都是好的教学方法。
四、在切实重视基础知识的落实中同时应重视基本技能和基本方法的培养
众所周知,近年来数学试题的新颖性、灵活性越来越强,不少师生把主要精力放在难度较大的综合题上,认为只有通过解决难题才能培养能力,因而相对地忽视了基础知识、基本技能、基本方法的教学。教学中直接把公式、定理、推论拿出来,或草草讲一道例题就通过大量的题目来训练学生。其实,定理、公式推理的过程蕴含着重要的解题方法和规律,教师没有充分展示思维过程,没有发掘其内在的规律,就让学生去做题,试图通过让学生大量地做题去“悟”出某些道理。结果是多数学生“悟”不出方法、规律,理解肤浅,记忆不牢,只会机械地模仿,思维水平较低,有时甚至生搬硬套,照葫芦画瓢,将简单问题复杂化。不少学生说:现在的试题量过大,他们往往无法完成全部试卷的解答,而解题速度的快慢主要取决于基本技能、基本方法的熟练程度及能力的高低。
以上是笔者在教学中的一些认识,要提高课堂教学效果,新课程理念就是要让学生充分“动”起来,培养学生学会分析问题、解决问题的能力,教师在课堂教学中扮演引领角色,学生才是主角。只有学生充分“动”起来,我们的课堂才能“活”起来,数学课堂教学才会有声有色,新课程教学才得以体现。
一、合理创设问题情境,引领学生进入数学的殿堂
新课程中的数学强调数学化、数学情境,数学教育提倡在情境中解决问题,教师要学会创设情境,把教科书的知识转化为问题,引导学生探究,帮助学生自己建构知识。一堂生动活泼的具有教学艺术魅力的好课犹如一支婉转悠扬的乐曲,“起调”扣人心弦,“主旋律”引人入胜,“终曲”余音绕梁.其中“起调”起着关键性的作用,这就要求教师善于在课始阶段设计一个好的教学情境,引领学生进入数学的殿堂,展开思维的翅膀,开启智慧的大门。
例如对于课本例题:“求函数的单调区间”的学习,在学生们具备了一定的知识后,我们对它进行了引伸,设计了如下程序性问题:(1)研究该函数的主要性质;(2)设计做出其图像的方案,并找出其图像的特征;(3)分别做出该函数的图像,并概括规律;(4)请同学找出一个具有此类函数模型的实际问题,并予以解决,问题呈现在学生面前以后,同学们情绪高昻,思维活跃,积极动手动脑,相互交流研究,第一个问题解决的比较顺利,第二个问题则显示出了较大的差异,第三个问题的结果丰富多彩。最后在老师的引导下,问题获得了圆满的解决。同学们也感受到了成功的喜悦,这里与传统的教学方法相比较,最大的区别就在于学生们主动的参与了获取知识的全过程。
二、充分关注学生课堂表现,激发学习兴趣,调动学习积极性,体现学生的主体地位
在教学过程中,教师要随时了解学生对所讲内容的掌握情况。如在讲完一个概念后,让学生复述;讲完一个例题后,将解答擦掉,请中等水平学生上台板演。有时,对于基础差的学生,可以对他们多提问,让他们有较多的锻炼机会。同时教师根据学生的表现,及时进行鼓励,培养他们的自信心,让他们能热爱数学,学习数学。
学生是学习的主体,教师要围绕学生展开教学,在教学过程中,自始至终让学生唱主角,使学生变被动学习为主动学习,让学生成为学习的主人,教师成为学习的领路人。根据课堂教学内容的要求,教师要精选例题,关键是讲解例题的时候,要能让学生也参与进来。教师应腾出十来分钟时间或更多的时间,让学生做做练习或思考教师提出的问题,或解答学生的提问,以进一步强化本堂课的教学内容。若课堂内容相对轻松,也可以指导学生进行预习,提出适当的要求,为下一次课做准备。
三、突出知识重点、化解难点仍是课堂教学的关键环节
每一堂课都要有一个重点,而整堂的教学都是围绕这个重点来逐步展开的。为了让学生明确本堂课的重点、难点,教师在上课开始时,可以在黑板的一角将这些内容简短地写出来,以便引起学生的重视。讲授重点内容,是整堂课的教学高潮。教师要通过声音、手势、板书等的变化或应用模型、投影仪等直观教具,刺激学生的大脑,使学生能够兴奋起来,对所学内容在大脑中留下强烈的印象,激发学生的学习兴趣,提高学生对新知识的接受能力。
如讲解《椭圆》第一课时,其教学的重点是掌握椭圆的定义和标准方程,难点是椭圆方程的化简。教师可从太阳、地球、人造地球卫星的运行轨道,谈到圆的直观图、圆萝卜的切片、阳光下圆盘在地面上的影子等等,让学生对椭圆有一个直观的了解。
为了强调椭圆的定义,教师事先准备好一根细线及两根钉子,在给出椭圆在数学上的严格定义之前,教师先在黑板上取两个定点(两定点之间的距离小于细线的长度),再让两名学生按教师的要求在黑板上画一个椭圆。画好后,教师再请刚才两名学生按同样的要求作图。学生通过观察两次作图的过程,总结出经验和教训,教师因势利导,让学生自己得出椭圆的严格的定义。这样,学生对这一定义就会有深刻的了解。
在进一步求标准方程时,学生容易遇到这样一个问题:化简出现了麻烦。这时教师可以适当提示:化简含有根号的式子时,我们通常有什么方法?学生回答:可以两边平方。教师问:是直接平方好还是恰当整理后再平方?学生通过实践,发现对于这个方程,直接平方不利于化简,而整理后再平方,最后能得到圆满的结果。这样,椭圆方程的化简这一难点也就迎刃而解了。同时也解决了以后将要遇到的求双曲线的标准方程时的化简问题。所以在一堂课上,教师要同时使用多种教学方法。“教无定法,贵在得法”。只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的掌握和运用,有利于重点突出、难点化解都是好的教学方法。
四、在切实重视基础知识的落实中同时应重视基本技能和基本方法的培养
众所周知,近年来数学试题的新颖性、灵活性越来越强,不少师生把主要精力放在难度较大的综合题上,认为只有通过解决难题才能培养能力,因而相对地忽视了基础知识、基本技能、基本方法的教学。教学中直接把公式、定理、推论拿出来,或草草讲一道例题就通过大量的题目来训练学生。其实,定理、公式推理的过程蕴含着重要的解题方法和规律,教师没有充分展示思维过程,没有发掘其内在的规律,就让学生去做题,试图通过让学生大量地做题去“悟”出某些道理。结果是多数学生“悟”不出方法、规律,理解肤浅,记忆不牢,只会机械地模仿,思维水平较低,有时甚至生搬硬套,照葫芦画瓢,将简单问题复杂化。不少学生说:现在的试题量过大,他们往往无法完成全部试卷的解答,而解题速度的快慢主要取决于基本技能、基本方法的熟练程度及能力的高低。
以上是笔者在教学中的一些认识,要提高课堂教学效果,新课程理念就是要让学生充分“动”起来,培养学生学会分析问题、解决问题的能力,教师在课堂教学中扮演引领角色,学生才是主角。只有学生充分“动”起来,我们的课堂才能“活”起来,数学课堂教学才会有声有色,新课程教学才得以体现。