论文部分内容阅读
基于量子位测量的二进制量子遗传算法,在用于连续问题优化时,由于频繁的解码运算,严重降低了优化效率。针对这一问题,提出了一种基于量子位相位编码的量子遗传算法。该方法直接采用量子位的相位对染色体进行编码,采用量子旋转门实现染色体上相位的更新,采用Pauli-Z门实现染色体的变异。在该方法中,由于优化过程统一在空间[0,2π]n进行,而与具体问题无关,因此,对不同尺度空间的优化问题具有良好的适应性。以函数极值优化为例,仿真结果表明该方法的搜索能力和优化效率明显优于普通量子遗传算法和标准遗传算法。