论文部分内容阅读
Effects of particle size and chain length on flotation of quaternary ammonium salts (QAS) onto kaolinite have been investigated by mico-flotation tests. The two kinds of quaternary ammonium salts [RN(CH3)3] with different chain lengths, dodecyltrimethylammonium chloride (DTAC) and cetyltrimethylammonium chloride (CTAC) were used as collectors for kaolinite in different particle size fractions (0.075–0.01 mm, 0.045–0.075 mm, 0–0.045 mm). The anomalous flotation behavior of kaolinite have been further explained based on crystal structure considerations by adsorption tests and molecular dynamics (MD) simulation. The results show that the flotation recovery of kaolinite in all different particle size fractions decreases with an increase in pH when DTAC and CTAC are used as collectors. As the concentration of collectors increases, the flotation recovery increases. The longer the carbon chain of QAS is, the higher the recoveries of coarse kaolinite (0.075–0.01 mm and 0.045–0.075 mm) are. But the flotation recovery of the finest kaolinite (0–0.045 mm) decreases with chain lengths of QAS collectors increasing, which is consistent with the flotation results of unsifted kaolinite (0–0.075 mm). It is explained by the froth stability related to the residual concentration of QAS collector. In lower residual concentration, the froth stability becomes worse. Within the range of flotation collector concentration, it’s easy of CTAC to be completely adsorbed by kaolinite in the particle size fraction (0–0.045 mm), which led to lower flotation recovery. Moreover, it is interesting that the particle size of kaolinite is coarser, the flotation recovery is higher. The anomalous flotation behavior of kaolinite is rationalized based on crystal structure considerations. The results of MD simulations show that the (001) kaolinite surface has the strongest interaction with DTAC, compared with the (001), (010) and (110) surfaces. On the other hand, when particle size of kaolinite is altered, the number of basal planes and edge planes is changed. It is observed that the finer kaolinite particles size become, the greater relative surface area of edges is, and the more the number of edges is. It means that fine kaolinite particles have more edges to adsorb less cationic colletors than that of coarse kaolinite particles, which is responsible for the poorer floatability of fine kaolinite.
Effects of particle size and chain length on flotation of quaternary ammonium salts (QAS) onto kaolinite have been investigated by mico-flotation tests. The two kinds of quaternary ammonium salts [RN (CH3) 3] with different chain lengths, dodecyltrimethylammonium chloride ) and cetyltrimethylammonium chloride (CTAC) were used as collectors for kaolinite in different particle size fractions (0.075-0.01 mm, 0.045-0.075 mm, 0-0.045 mm). The anomalous flotation behavior of kaolinite have been further explained based on crystal structure considerations by adsorption tests and molecular dynamics (MD) simulation. The results show that the flotation recovery of kaolinite in all different particle size fractions decreases with an increase in pH when DTAC and CTAC are used as collectors. As the concentration of collectors increases, the flotation The longer the carbon chain of QAS is, the higher the recoveries of coarse kaolinite (0.075-0.01 mm and 0.045-0.075 mm ) is the flotation recovery of the finest kaolinite (0-0.045 mm) decreases with the chain lengths of QAS collectors increasing, which is consistent with the flotation results of unsifted kaolinite (0-0.075 mm). It is explained by the froth stability Within the range of flotation collector concentration, it’s easy of CTAC to be completely adsorbed by kaolinite in the particle size fraction (0-0.045 mm), which led to lower flotation recovery. Moreover, it is interesting that the particle size of kaolinite is coarser, the flotation recovery is higher. The anomalous flotation behavior of kaolinite is rationalized based on crystal structure considerations. The results of MD simulations show that the ( 001) kaolinite surface has the strongest interaction with DTAC, compared with the (001), (010) and (110) surfaces. On the other hand, when particle size of kaolini te is altered, tit is observed that the finer kaolinite particles size become, the greater relative surface area of edges is, and the more the number the edges is. It means that fine kaolinite particles have more edges to adsorb less cationic colletors than that of coarse kaolinite particles, which is responsible for the poorer floatability of fine kaolinite.