论文部分内容阅读
The Ryukyu trench-arc system can be divided into two types according to its subduction model. The normal sub-duction in the northern part of the Philippine Sea plate creates a hinge sedimentary wedge with large deformation at the col-lision front, while the oblique subduction in the southern part gives rise to a smaller accretion with small deformation thanthat in the northern part. The mechanisms that cause the distinction between these two types have been analysed and calcu-lated by using gravity data based on the lithosphere rheology and the stress state of the lithosphere in the subduction bound-ary. The two types of subduction model are associated with the internal extension in the southern Okinawa Trough and thesmall extension in the northern part. The difference of the stress state between the two types of subduction model is alsomanifested in other tectonic features, such as topography, volcanic activity and crust movement. Modeling bathymetric andgravity data from this area suggests that the oblique subduction of low angle, together with smooth geometry of the overlyingplate crust, results in small stress released on the south of the trench by the subduction plate. The intraplate faults in thesouthern Okinawa Trough behind the trench stand in surplus intensive stress. On the other hand, the normal subduction ofhigh angle, together with strong undulation geometry of the overlying crust, results in more intensive stress released in thenorthern Ryukyu Trench than that in the south. The intraplate faults in the northern Okinawa Trough behind the northernRyukyu Trench stand in small stress.