论文部分内容阅读
[摘 要]采用定温灰化法获得燃料油灰分,用盐酸对灰分进行溶解,利用火焰原子吸收法测定燃料油中金属钙、铁和镁的含量。加标回收实验回收率98%-102%,满足日常分析要求。
[关键词]燃料油 灰化法 原子吸收 金属含量
中图分类号:F406.5 文献标识码:A 文章编号:1009-914X(2014)40-0061-02
1 前言
回炼用燃料油中含有大量的钙、铁、镁等金属元素,燃料油在使用过程中金属元素对设备有一定的腐蚀,并且易形成大量盐类物质沉积在设备上,影响设备的使用效率和使用寿命,严重时将导致事故的发生。燃料油的采购途径比较广,各个厂家提供的燃料油中的金属含量各不相同,为了严格控制进入回炼装置的燃料油中金属含量,保证设备的正常使用,杜绝事故的发生,关键得保证采购的燃料油质量符合生产要求。因此,在燃料油进厂时金属元素的分析成了必测项目。
目前,燃料油中金属元素含量分析一般采用灰化法进行样品预处理,然后用四硼酸二锂、氟化锂熔解残留物,再酸化定容,用原子吸收法或电感耦合等离子电感发射光谱测定。由于对进厂燃料油样品主要控制钙、铁和镁等常见金属元素,且这三类金属元素均易溶解于盐酸,因此样品预处理直接用盐酸溶解,省去添加助溶剂,使得样品预处理速度加快,并且样品溶解完全,对分析结果没有影响。如按传统的处理方法,方法复杂,分析时间长,无法满足日常生产分析要求。为了能够满足日常生产分析要求,且能够准确、快速的测定出燃料油中金属元素含量,燃料油样品灰化后直接用1:1的盐酸溶液溶解,定容进行分析。并对灰化温度和灰化时间进行了大量的实验,摸索出燃料油灰化的最佳分析条件,利用加标回收实验表明此方法准确可靠。
2 实验部分
2.1 仪器设备
PE-AA700原子吸收仪
数显电热板
数显恒温烘箱
马弗炉
100ml石英烧杯、石英表面皿
2000ml玻璃烧杯
100ml玻璃容量瓶
玻璃移液管
电子天平
2.2 仪器参数
2.3 试剂
钙单元素标准溶液:1000ug/ml
铁单元素标准溶液:1000ug/ml
镁单元素标准溶液:1000ug/ml
盐酸(GR):1+1
二级水
2.4 燃料油性质
2.5 样品预处理
2.5.1 将100ml石英烧杯和石英表面皿放于2000ml玻璃烧杯中,加入1000ml1+1盐酸溶液放置于电热板上加热至微沸约30分钟,除去附着在石英烧杯内壁的金属物质。待冷却后用二级水冲洗干净放入恒温干燥箱中(105℃),烘干备用。
2.5.2 不同厂家的燃料油水分含量不一致,对于水分大的燃料油样品首先进行脱水处理,否则在燃烧过程中由于水分沸点较燃料油低,受热最先逸出,导致油品溅出,使得测量结果不准确。
2.5.3 称量约20g处理好的燃料油样品于100ml石英烧杯中,准确称量至0.0001g。每个样品称量两个做平行样,同时做空白实验,空白实验除了不加燃料油,其他操作同燃料油样品实验完全相同。将定量无灰滤纸对折两次呈扇形,撕去尖端滤纸,把撕下的滤纸放于石英烧杯中,将滤纸打开至漏斗形状倒扣在石英烧杯中,把石英烧杯置于电热板上,待油完全浸透滤纸后将滤纸引燃,使样品进行燃烧,燃烧过程中无需加热,待样品燃烧至不能再继续被点燃时打开电热板至400℃对样品进行加热,直至石英烧杯不再冒烟,灰化完全为止。将灰化完全的石英烧杯,放入升到一定温度的马弗炉门口边缘,直至石英烧杯不冒黑烟时盖上石英表面皿缓慢推至马弗炉加热区进行加热。加热至灰化完全时将石英烧杯取出,冷却,沿壁加入1+1的盐酸15ml,盖上石英表面皿,放置于电热板上加热,使石英烧杯内残留的灰分完全溶解,待石英烧杯内的液体蒸发至2-3ml时停止加热,将石英烧杯取下,用二级水冲洗石英表面皿,洗液收集在石英烧杯内,用二级水冲洗石英烧杯内壁,转移至100ml容量瓶中,定容至刻线。摇匀,待分析。具体的加热温度和加热时间由2.6中的实验给出。
2.6 灰化温度和灰化时间的选择
根据燃料油的性质将灰化温度设定为500℃、550℃、600℃、700℃、800℃进行试验,由于温度的不同样品灰化至完全需要的时间不同,对此进行了一系列实验,根据实验数据得出灰化温度设定为500℃时,灰化时间过长,影响分析速度。灰化温度为600℃时,灰化时间为2h,对于上述性质的燃料油,在此条件下样品中的金属元素分析数据稳定,分析速度快,能够满足生产分析要求。灰化温度设定为700℃以上时灰化至完全的时间缩短至1.5h,可以达到灰化完全的要求,但是由于在高温状态下, 样品极易产生元素损失, 且会形成酸不溶性混合物, 产生滞留损失。因此,对于此类燃料油选择600℃加热可满足分析要求,且不造成待测金属元素含量损失。
确定了最佳灰化温度,对灰化时间进行实验验证。在600℃条件下,对同一个燃料油样品进行2h、8h和16h的加热实验,测定结果一致,从而证明了延长加热时间对分析结果没有影响,因此,只要保证燃料油样品灰化完全,分析时间越短分析效率越高。通过实验验证,对比表2中燃料油的性质,综合考虑设定燃料油样品灰化加热温度为600℃、灰化加热时间为2h,即可满足分析要求。
2.7 火焰原子吸收分析步骤
2.7.1 样品准备
将2.5.3中预处理的燃料油样品定容至100ml,摇匀,待分析。
2.7.2 开机准备
打开PE-AA700火焰原子吸收光谱仪,点击图标进入工作站,进行联机,打开通风设备后打开空气、乙炔。 2.7.3 标准工作曲线的绘制
用1000ug/ml的钙、铁、镁标准溶液进行稀释,根据样品中待测金属元素含量配制成不同浓度的标准溶液,进行标准工作曲线的绘制。钙标准工作曲线浓度:1.0ug/ml、2.0ug/ml、3.0ug/ml、4.0ug/ml、5.0ug/ml,铁标准工作曲线浓度:1.0ug/ml、2.0ug/ml、3.0ug/ml、4.0ug/ml、5.0ug/ml,镁标准工作曲线浓度:0.1ug/ml、0.2ug/ml、0.3ug/ml、0.4ug/ml、0.5ug/ml。将配制好的标准工作溶液吸入火焰原子吸收光谱仪中进行标准工作曲线的绘制。曲线的线性相关系数达到0.999以上,否则因为标准工作曲线线性低,影响分析结果的准确性,在燃料油样品分析过程中如果样品中待测金属元素含量超出标准工作曲线范围,则应对2.5.3中预处理好的样品进行稀释后再测定。保证样品测定值在标准工作曲线的线性范围内。
2.7.4 样品测定
将2.5.3中预处理的样品摇匀用2.7.3绘制的标准工作曲线进行样品测定,测定数据如下表3:
2.8 加标回收实验
为了验证燃料油样品在600℃加热2h灰化的过程中没有样品损失、未引入待测金属元素,对燃料油样品进行了加入标准溶液的回收实验,将一定体积的1000ug/ml标准溶液用移液管加入样品中,用相同的分析条件进行燃烧灰化,并用火焰原子吸收光谱仪进行样品测试,其中镁含量的加标回收定容至1000ml,为了防止测定值超出标准工作曲线范围。测试结果如表4:
通过加标回收实验得出样品加标回收率均高达98%以上,有效验证了本实验方法的稳定性和准确性。由于实验中采用的是石英烧杯,石英表面皿,其性质稳定,实验过程中仪器本身不引入待测金属元素误差,样品损失量小。
3 结论
采用定温灰化法预处理样品,灰化温度为600℃、加热时间为2h,用火焰原子吸收法测定燃料油中金属元素钙、铁、镁,通过加标回收实验证明方法稳定性好,准确度高,适合分析燃料油中金属元素,可以满足日常生产分析要求。
4 注意
4.1 样品量控制在约20g左右,因为样品量太少不具有代表性,引入样品不均匀性的误差,样品量太大引起灰化困难或时间太长,势必引入新的误差并且增加了工作量;
4.2 由于瓷坩埚在高温下长期加热易损耗且易带入分析误差,本实验使用石英烧杯和石英表面皿,避免了传统烧灰使用瓷坩埚带入的误差;
4.3 样品在马弗炉内灰化时在石英烧杯上盖上石英表面皿,以免马弗炉顶部和内壁的灰尘掉进石英烧杯内,影响分析结果的准确性;
4.4 预灰化的石英烧杯放入马弗炉的中心加热区,因为靠近门口的位置达不到预设加热温度,使得在2h内灰化不完全,影响实验完成;
4.5 样品在用高温马弗炉灰化以前, 必须先在电热板上低温炭化至无烟( 预灰化);
4.6 如果样品发生变化,比如样品为蒽油或者液化重油,则在分析温度不变的情况下必须延长加热时间,否则灰化不完全,无法进行样品溶解进而进行下一步分析。
5 结束语
在日常分析工作中面对的样品具有复杂多样性,分析要求特殊性。因此,分析方法的改进与开发显得尤为重要,我们要在工作中不停的去发现、去创造新的分析方法,以满足日常的分析工作要求。
参考文献
[1] 田华,欧彦伟,钱梅,宋丹.干法灰化-电感耦合等离子体发射光谱法测定原油中重金属含量[C].石油炼制于化工2014,45(2).
[2] 李杰,孙晓琳.燃料油生产技术[M].化学工业出版社.
[关键词]燃料油 灰化法 原子吸收 金属含量
中图分类号:F406.5 文献标识码:A 文章编号:1009-914X(2014)40-0061-02
1 前言
回炼用燃料油中含有大量的钙、铁、镁等金属元素,燃料油在使用过程中金属元素对设备有一定的腐蚀,并且易形成大量盐类物质沉积在设备上,影响设备的使用效率和使用寿命,严重时将导致事故的发生。燃料油的采购途径比较广,各个厂家提供的燃料油中的金属含量各不相同,为了严格控制进入回炼装置的燃料油中金属含量,保证设备的正常使用,杜绝事故的发生,关键得保证采购的燃料油质量符合生产要求。因此,在燃料油进厂时金属元素的分析成了必测项目。
目前,燃料油中金属元素含量分析一般采用灰化法进行样品预处理,然后用四硼酸二锂、氟化锂熔解残留物,再酸化定容,用原子吸收法或电感耦合等离子电感发射光谱测定。由于对进厂燃料油样品主要控制钙、铁和镁等常见金属元素,且这三类金属元素均易溶解于盐酸,因此样品预处理直接用盐酸溶解,省去添加助溶剂,使得样品预处理速度加快,并且样品溶解完全,对分析结果没有影响。如按传统的处理方法,方法复杂,分析时间长,无法满足日常生产分析要求。为了能够满足日常生产分析要求,且能够准确、快速的测定出燃料油中金属元素含量,燃料油样品灰化后直接用1:1的盐酸溶液溶解,定容进行分析。并对灰化温度和灰化时间进行了大量的实验,摸索出燃料油灰化的最佳分析条件,利用加标回收实验表明此方法准确可靠。
2 实验部分
2.1 仪器设备
PE-AA700原子吸收仪
数显电热板
数显恒温烘箱
马弗炉
100ml石英烧杯、石英表面皿
2000ml玻璃烧杯
100ml玻璃容量瓶
玻璃移液管
电子天平
2.2 仪器参数
2.3 试剂
钙单元素标准溶液:1000ug/ml
铁单元素标准溶液:1000ug/ml
镁单元素标准溶液:1000ug/ml
盐酸(GR):1+1
二级水
2.4 燃料油性质
2.5 样品预处理
2.5.1 将100ml石英烧杯和石英表面皿放于2000ml玻璃烧杯中,加入1000ml1+1盐酸溶液放置于电热板上加热至微沸约30分钟,除去附着在石英烧杯内壁的金属物质。待冷却后用二级水冲洗干净放入恒温干燥箱中(105℃),烘干备用。
2.5.2 不同厂家的燃料油水分含量不一致,对于水分大的燃料油样品首先进行脱水处理,否则在燃烧过程中由于水分沸点较燃料油低,受热最先逸出,导致油品溅出,使得测量结果不准确。
2.5.3 称量约20g处理好的燃料油样品于100ml石英烧杯中,准确称量至0.0001g。每个样品称量两个做平行样,同时做空白实验,空白实验除了不加燃料油,其他操作同燃料油样品实验完全相同。将定量无灰滤纸对折两次呈扇形,撕去尖端滤纸,把撕下的滤纸放于石英烧杯中,将滤纸打开至漏斗形状倒扣在石英烧杯中,把石英烧杯置于电热板上,待油完全浸透滤纸后将滤纸引燃,使样品进行燃烧,燃烧过程中无需加热,待样品燃烧至不能再继续被点燃时打开电热板至400℃对样品进行加热,直至石英烧杯不再冒烟,灰化完全为止。将灰化完全的石英烧杯,放入升到一定温度的马弗炉门口边缘,直至石英烧杯不冒黑烟时盖上石英表面皿缓慢推至马弗炉加热区进行加热。加热至灰化完全时将石英烧杯取出,冷却,沿壁加入1+1的盐酸15ml,盖上石英表面皿,放置于电热板上加热,使石英烧杯内残留的灰分完全溶解,待石英烧杯内的液体蒸发至2-3ml时停止加热,将石英烧杯取下,用二级水冲洗石英表面皿,洗液收集在石英烧杯内,用二级水冲洗石英烧杯内壁,转移至100ml容量瓶中,定容至刻线。摇匀,待分析。具体的加热温度和加热时间由2.6中的实验给出。
2.6 灰化温度和灰化时间的选择
根据燃料油的性质将灰化温度设定为500℃、550℃、600℃、700℃、800℃进行试验,由于温度的不同样品灰化至完全需要的时间不同,对此进行了一系列实验,根据实验数据得出灰化温度设定为500℃时,灰化时间过长,影响分析速度。灰化温度为600℃时,灰化时间为2h,对于上述性质的燃料油,在此条件下样品中的金属元素分析数据稳定,分析速度快,能够满足生产分析要求。灰化温度设定为700℃以上时灰化至完全的时间缩短至1.5h,可以达到灰化完全的要求,但是由于在高温状态下, 样品极易产生元素损失, 且会形成酸不溶性混合物, 产生滞留损失。因此,对于此类燃料油选择600℃加热可满足分析要求,且不造成待测金属元素含量损失。
确定了最佳灰化温度,对灰化时间进行实验验证。在600℃条件下,对同一个燃料油样品进行2h、8h和16h的加热实验,测定结果一致,从而证明了延长加热时间对分析结果没有影响,因此,只要保证燃料油样品灰化完全,分析时间越短分析效率越高。通过实验验证,对比表2中燃料油的性质,综合考虑设定燃料油样品灰化加热温度为600℃、灰化加热时间为2h,即可满足分析要求。
2.7 火焰原子吸收分析步骤
2.7.1 样品准备
将2.5.3中预处理的燃料油样品定容至100ml,摇匀,待分析。
2.7.2 开机准备
打开PE-AA700火焰原子吸收光谱仪,点击图标进入工作站,进行联机,打开通风设备后打开空气、乙炔。 2.7.3 标准工作曲线的绘制
用1000ug/ml的钙、铁、镁标准溶液进行稀释,根据样品中待测金属元素含量配制成不同浓度的标准溶液,进行标准工作曲线的绘制。钙标准工作曲线浓度:1.0ug/ml、2.0ug/ml、3.0ug/ml、4.0ug/ml、5.0ug/ml,铁标准工作曲线浓度:1.0ug/ml、2.0ug/ml、3.0ug/ml、4.0ug/ml、5.0ug/ml,镁标准工作曲线浓度:0.1ug/ml、0.2ug/ml、0.3ug/ml、0.4ug/ml、0.5ug/ml。将配制好的标准工作溶液吸入火焰原子吸收光谱仪中进行标准工作曲线的绘制。曲线的线性相关系数达到0.999以上,否则因为标准工作曲线线性低,影响分析结果的准确性,在燃料油样品分析过程中如果样品中待测金属元素含量超出标准工作曲线范围,则应对2.5.3中预处理好的样品进行稀释后再测定。保证样品测定值在标准工作曲线的线性范围内。
2.7.4 样品测定
将2.5.3中预处理的样品摇匀用2.7.3绘制的标准工作曲线进行样品测定,测定数据如下表3:
2.8 加标回收实验
为了验证燃料油样品在600℃加热2h灰化的过程中没有样品损失、未引入待测金属元素,对燃料油样品进行了加入标准溶液的回收实验,将一定体积的1000ug/ml标准溶液用移液管加入样品中,用相同的分析条件进行燃烧灰化,并用火焰原子吸收光谱仪进行样品测试,其中镁含量的加标回收定容至1000ml,为了防止测定值超出标准工作曲线范围。测试结果如表4:
通过加标回收实验得出样品加标回收率均高达98%以上,有效验证了本实验方法的稳定性和准确性。由于实验中采用的是石英烧杯,石英表面皿,其性质稳定,实验过程中仪器本身不引入待测金属元素误差,样品损失量小。
3 结论
采用定温灰化法预处理样品,灰化温度为600℃、加热时间为2h,用火焰原子吸收法测定燃料油中金属元素钙、铁、镁,通过加标回收实验证明方法稳定性好,准确度高,适合分析燃料油中金属元素,可以满足日常生产分析要求。
4 注意
4.1 样品量控制在约20g左右,因为样品量太少不具有代表性,引入样品不均匀性的误差,样品量太大引起灰化困难或时间太长,势必引入新的误差并且增加了工作量;
4.2 由于瓷坩埚在高温下长期加热易损耗且易带入分析误差,本实验使用石英烧杯和石英表面皿,避免了传统烧灰使用瓷坩埚带入的误差;
4.3 样品在马弗炉内灰化时在石英烧杯上盖上石英表面皿,以免马弗炉顶部和内壁的灰尘掉进石英烧杯内,影响分析结果的准确性;
4.4 预灰化的石英烧杯放入马弗炉的中心加热区,因为靠近门口的位置达不到预设加热温度,使得在2h内灰化不完全,影响实验完成;
4.5 样品在用高温马弗炉灰化以前, 必须先在电热板上低温炭化至无烟( 预灰化);
4.6 如果样品发生变化,比如样品为蒽油或者液化重油,则在分析温度不变的情况下必须延长加热时间,否则灰化不完全,无法进行样品溶解进而进行下一步分析。
5 结束语
在日常分析工作中面对的样品具有复杂多样性,分析要求特殊性。因此,分析方法的改进与开发显得尤为重要,我们要在工作中不停的去发现、去创造新的分析方法,以满足日常的分析工作要求。
参考文献
[1] 田华,欧彦伟,钱梅,宋丹.干法灰化-电感耦合等离子体发射光谱法测定原油中重金属含量[C].石油炼制于化工2014,45(2).
[2] 李杰,孙晓琳.燃料油生产技术[M].化学工业出版社.