一种深度回声状态网络的输入尺度自适应算法

来源 :计算机工程 | 被引量 : 0次 | 上传用户:cnars
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
深度回声状态网络是回声状态网络与深度学习思想的结合,合理选取不同谱半径的内部状态矩阵和弱积分参数能有效增强深度回声状态网络的多尺度时域特性.利用数据可视化分析输出矩阵在不同网络层中的分布关系,发现高层网络中部分神经元处于饱和工作状态且该状态抑制了网络动态预测能力.提出一种深度回声状态网络的输入矩阵自适应算法,在对网络内部状态的均值和方差进行递推估计的基础上判断神经元饱和状态,通过自适应调整各层输入权重的值来增强神经元动态性.数值计算结果表明,基于输入尺度自适应算法的深度回声状态网络相对同等规模的单层回声状态网络对于动态系统的预测精度有成倍提升.
其他文献
垃圾分类是保护生态环境、促进经济发展的有效措施,利用深度学习进行垃圾分类已成为当前学术界和工业界的研究热点.传统垃圾分类主要由人工进行分拣和分类,存在劳动强度大、分选效率低、工作环境差等缺点,急需智能化、自动化的分类方法来替代.近年来研究人员已经开始初步探索利用深度学习技术进行垃圾分类并提出一些有效的方法.从方法、数据集和研究方向等方面分析深度学习垃圾分类方法的研究现状,介绍不同深度学习模型在垃圾分类中的应用和发展,研究基于ResNet方法、基于DenseNet方法、基于单阶段目标检测方法和基于卷积神经网
针对传统的IDS规则更新方法基本只能提取已知攻击行为的特征,或者在原有特征的基础上寻找最佳的一般表达式,无法针对当前发生的热点网络安全事件做出及时更新,提出基于威胁情报的自动生成入侵检测规则方法.文章分类模块使用Word2Vec进行特征提取,利用AdaBoost算法训练文章分类模型获取威胁情报文本;定位IoC所在的段落并使用条件共现度算法进行特征扩展和子文档重构,使用深度学习算法ResLCNN提取文章中的IoC数据;将所提取的IoC数据转化为入侵检测规则.通过对最新恶意代码流量数据进行测试,该方法对新发现
随着网络安全技术的更新迭代,新型攻击手段日益增加,企业面临未知威胁难以识别的问题.用户与实体行为分析是识别用户和实体行为中潜在威胁事件的一种异常检测技术,广泛应用于企业内部威胁分析和外部入侵检测等任务.基于机器学习方法对用户和实体的行为进行模型建立与风险点识别,可以有效解决未知威胁难以检测的问题,增强企业网络安全防护能力.回顾用户与实体行为分析的发展历程,重点讨论用户与实体行为分析技术在统计学习、深度学习、强化学习等3个方面的应用情况,研究具有代表性的用户与实体行为分析算法并对算法性能进行对比分析.介绍4
由于难以构造通用的认证结构对图像类型数据的相似度计算过程进行验证,因此对加密图像检索结果的验证面临很大挑战.同时,现有多数加密图像检索方案没有考虑恶意云服务器的问题,可能返回不正确或不完整的检索结果.利用区块链技术的去中心化、不可篡改等特性,提出一种基于区块链可验证的加密图像检索方案BVEIR,确保搜索结果的可靠性与搜索过程的透明性.将加密索引存储在区块链(以太坊)上,通过区块链的共识机制保证在智能合约上完成搜索的功能,确保搜索结果完备性,同时将相应的加密图像数据外包到云服务器以降低存储成本,并在相似图片
知识图谱采用RDF三元组的形式描述现实世界中的关系和头、尾实体,即(头实体,关系,尾实体)或(主语,谓语,宾语).为补全知识图谱中缺失的事实三元组,将四元数融入胶囊神经网络模型预测缺失的知识,并构建一种新的知识图谱补全模型.采用超复数嵌入取代传统的实值嵌入来编码三元组结构信息,以尽可能全面捕获三元组全局特性,将实体、关系的四元数嵌入作为胶囊网络的输入,四元数结合优化的胶囊网络模型可以有效补全知识图谱中丢失的三元组,提高预测精度.链接预测实验结果表明,与CapsE模型相比,在数据集WN18RR中,该知识图谱
问答系统应用于人工智能、自然语言处理和信息检索领域获得了较好的效果,知识图谱问答(KBQA)作为其中的重要组成部分,是一项极具挑战性的自然语言处理任务.然而,目前常见的中文KBQA系统对于实体链接的实体消歧部分并没有给出很好的解决方法.提出一种基于多特征实体消歧的中文KBQA系统,通过结合实体自身的知名度特征、问句与实体关系的语义相似度特征、问句与实体的字符相似度特征和语义相似度特征,构建多特征实体消歧模型,提高实体链接准确率,为系统的问句分类和最优路径选取部分提供更准确的主题实体,从而提升系统性能.实验
查询文本中频繁出现的短语可快速掌握文本内容,然而传统频繁词序列挖掘算法面向挖掘任务时的时间复杂度较高,无法满足频繁更换查询条件及快速获得反馈的查询需求.利用基于频率树的快速频繁词序列挖掘算法(TS_Mining),在保持后缀树线性构造时间的情况下实现文本集合中频繁词序列的查询,并采用树型索引结构避免多次扫描文本集合,降低算法时间复杂度.针对连续时间区间内的频繁词序列查询问题,提出改进的剪枝挖掘算法(TS_Pruning),通过减少频率树的扫描范围进一步提高挖掘效率.实验结果表明,TS_Mining与TS_
传统机器学习方法泛化性能不佳,需要通过大规模数据训练才能得到较好的拟合结果,因此不能快速学习训练集外的少量数据,对新种类任务适应性较差,而元学习可实现拥有类似人类学习能力的强人工智能,能够快速适应新的数据集,弥补机器学习的不足.针对传统机器学习中的自适应问题,利用样本图片的局部旋转对称性和镜像对称性,提出一种基于群等变卷积神经网络(G-CNN)的度量元学习算法,以提高特征提取能力.利用G-CNN构建4层特征映射网络,根据样本图片中的局部对称信息,将支持集样本映射到合适的度量空间,并以每类样本在度量空间中的
将语义数据流处理引擎与知识图谱嵌入表示学习相结合,可以有效提高实时数据流推理查询性能,但是现有的知识表示学习模型更多关注静态知识图谱嵌入,忽略了知识图谱的动态特性,导致难以应用于实时动态语义数据流推理任务.为了使知识表示学习模型适应知识图谱的在线更新并能够应用于语义数据流引擎,建立一种基于改进多嵌入空间的动态知识图谱嵌入模型PUKALE.针对传递闭包等复杂推理场景,提出3种嵌入空间生成算法.为了在进行增量更新时更合理地选择嵌入空间,设计2种嵌入空间选择算法.基于上述算法实现PUKALE模型,并将其嵌入数据
生物网络比对是研究生物进化过程的重要手段,不同物种间的比对不仅有助于理解物种的知识转移,同时也有助于进行功能预测和检测保守功能成分.然而,现有比对算法很难实现拓扑度量和生物度量同时最优.设计JAlign算法,将拓扑相似性与归一化序列相似性相结合构成目标函数,基于种子-扩展算法和模块检测进行全局比对.在种子筛选阶段,利用Jerarca聚类算法划分功能模块,借助目标函数计算模块间的相似性进行最优模块匹配,并从匹配结果中提取部分节点对作为种子节点.在扩展阶段,将比对从种子节点扩展至其邻居节点,在选择节点对进行扩