论文部分内容阅读
提出了一种基于粗糙集理论的最简规则挖掘方法,它是一个采用基于分类正确度的粗糙集模型进行多概念分类规则挖掘的新方法,能有效处理决策表的不一致性,采用启发式算法,挖掘出满足给定精确度的最简产生式规则知识.用多个UCI数据集对算法进行了测试,并且与著名的Rosetta软件进行实验对比,结果说明此方法大大提高了总的数据约简量,可以有效地简化最终得到的规则知识.