论文部分内容阅读
This paper reports that the radio frequency magnetron sputtering is used to fabricate ZnO and Mn-doped ZnO thin films on glass substrates at 500 C. The Mn-doped ZnO thin films present wurtzite structure of ZnO and have a smoother surface, better conductivity but no ferromagnetism. The x-ray photoelectron spectroscopy results show that the binding energy of Mn2p3/2 increases with increasing Mn content slightly, and the state of Mn in the Mn-doped ZnO thin films is divalent. The chemisorbed oxygen in the Mn-doped ZnO thin films increases with increasing Mn doping concentration. The photoluminescence spectra of ZnO and Mn-doped ZnO thin films have a similar ultraviolet emission. The yellow green emissions of 4 wt.% and 10 wt.% Mn-doped thin films are quenched, whereas the yellow green emission occurs because of abundant oxygen vacancies in the Mn-doped ZnO thin films after 20 wt.% Mn doping. Compared with pure ZnO thin film, the bandgap of the Mn-doped ZnO thin films increases with increasing Mn content.
This paper reports that the radio frequency magnetron sputtering is used to fabricate ZnO and Mn-doped ZnO thin films on glass substrates at 500 C. The Mn-doped ZnO thin films present wurtzite structure of ZnO and have a smoother surface, better conductivity but no ferromagnetism. The x-ray photoelectron spectroscopy results show that the binding energy of Mn2p3 / 2 increases with increasing Mn content slightly, and the state of Mn in the Mn-doped ZnO thin films is divalent. The chemisorbed oxygen in the Mn- doped ZnO Thin films increases with increasing Mn doping concentration. The photoluminescence spectra of ZnO and Mn-doped ZnO thin films have a similar ultraviolet emission. The yellow green emissions of 4 wt.% and 10 wt.% Mn-doped thin films are quenched, the yellow green emission occurs because of abundant oxygen vacancies in the Mn-doped ZnO thin films after 20 wt.% Mn doping. Compared with pure ZnO thin film, the bandgap of the Mn-doped ZnO thin films increases with increa sing Mn content.