论文部分内容阅读
采用SVM的序列最小最优化算法(SMO)作为训练算法对商业银行个人房贷信用评估数据进行分析,着重探讨了在个人房贷信用评估中分别应用径向基核函数参数和SMO训练算法中的参数调整对准确度的影响;通过银行实际数据集将该算法与C4.5和神经网络进行了比较,支持向量机对个人信用评估的总精度高于其他两种算法;支持向量机对实际的住房抵押贷款数据进行信用评估效果较好,且参数调整对试验结果有影响。