论文部分内容阅读
针对BP算法存在的不足,本文提出了一种PCA-GABP神经网络方法预测发动机负荷特性,该方法由主成分分析(PCA)和遗传神经网络(GABP)两部分构成,采用PCA技术减少网络输入变量、精简网络结构、提高学习效率;GABP算法采用局部改进遗传算法优化神经网络权值,并采用自适应学习速率动量梯度下降算法对神经网络进行训练。预测结果表明该方法在准确性和收敛性方面都优于BP算法。