论文部分内容阅读
各种原因导致的慢性皮肤溃疡是临床诸多疾病的常见并发症之一,具有病程长,反复发作,花费巨大的特点,对患者生活、心理和工作质量都具有极大影响。对创面愈合机制的研究一直以来都是国内外学者研究的热点与难点,研究显示Wnt信号通路与创面愈合密切相关。Wnt信号通路分为经典与非经典信号通路,近年来,两种通路在创面愈合中的作用见诸多文献报道,本文就Wnt信号通路与创面愈合的关系综述如下。
1 Wnt信号通路简介
1973年,Sharma等[1]在对果蝇胚胎发育的研究中发现了无翅基因(Wingless)。1982年,Nusser等[2]对小鼠乳腺肿瘤研究时发现一种可以在细胞间传递增殖分化信号的蛋白质,当时称其为Intl。后经研究发现果蝇的无翅基因(Wingless)即为Wnt样基因,所以统一命名为Wnt1基因。迄今为止,包括Wnt1基因在内,在人和脊椎动物中共发现了19种Wnt基因[3]。这些基因编码Wnt蛋白家族,是一组富含半胱氨酸的分泌性糖蛋白。Wnt蛋白在多种组织细胞中均有表达,它们通过自分泌或旁分泌的方式激活膜受体而发挥作用。Wnt信号通路多种分泌型Wnt蛋白已被证明存在于从线虫到人类的多种生物中[4]。Wnt基因编码的Wnt蛋白及其受体、调节蛋白等一起组成了复杂的信号通路;称为Wnt信号转导通路。它与胚胎正常发育、细胞的增殖与分化以及肿瘤形成密切相关[5]。目前,研究显示Wnt信号转导通路有主要3条途径:①经典Wnt-β-catenin-LEF/TCF通路:这条通路激活后将募集细胞内的β-catenin,将后者活化后转移入细胞核,与转录因子LEF/TCF等共同作用激活特异基因的转录;②细胞极性通路:主要调控细胞骨架的重排;③Wnt/Ca2+通路:通过钙依赖性激酶、钙调蛋白和转录因子NF-AT(nuclear factor of activated T cell)起作用[6]。已有研究证实Wnt/β-catenin信号通路能促进创面愈合,Wnt信号通路相关糖蛋白也与创面愈合有密切关系[7]。
2 经典Wnt/β-catenin信号通路与创面愈合
既往研究显示Wnt信号通路主要与毛囊发育相关,是控制动物胚胎发育和组织器官形态发生的重要信号转导途径之一[8]。随着研究的深入,越来越多的证据显示,Wnt信号通路具有多种不同的生理功能,包括影响干细胞增殖与自我更新[9],与创面愈合也密切相关[10]。Carre等[11]采用Wnt3a腺病毒模拟激活经典Wnt信号通路,研究Wnt信号通路、TGF-β与透明质酸在创面愈合与瘢痕形成的关系。结果显示经典Wnt信号通路在新生小鼠皮肤创面表达明显增高,而在胚胎小鼠创面模型中未发现增高。重组Wnt3a模拟激活Wnt信号通路后能促进出生后小鼠成纤维细胞增殖,而对胚胎小鼠成纤维细胞却此无效。Wnt信号通路激活可使出生后小鼠成纤维细胞中HAS1和Hyal2基因表达增强,从而显著提高I型胶原表达。Barcelos[12-13]研究显示,CD133+祖细胞能激活Wnt信号通路,并通过旁分泌刺激内皮细胞增殖、迁移,促进血管增生而促进糖尿病缺血性溃疡愈合,同时,这一效应能被Wnt信号拮抗分子sFRP-1所阻断。在经典Wnt信号通路中,β-catenin是Wnt/β-catenin信号通路的重要组成部分,是控制动物胚胎发育和组织器官形态发生的重要信号转导途径元件之一[8]。正常情况下,成年机体Wnt基因则多处于相对静止状态。皮肤损伤后,TGF-β能暂时提高创面β-catenin表达。TGF-β通过Smad3和p38 MAPK 通路激活β-catenin介导的人上皮成纤维细胞转录,并且TGF-β在肥大瘢痕和瘢痕疙瘩中也诱导Wnt/β-catenin信号通路的上调[14]。β-catenin在真皮成纤维细胞核内持续增高,有利于成纤维细胞增殖与迁移,同时又反馈激活TGF-β信号通路。但在慢性皮肤溃疡中,这一过程因TGF-β信号通路持续激活而得到增强[15]。增强的Wnt/β-catenin信号通路在TGF-β1诱导的正常皮肤从成纤维细胞到肌成纤维细胞的转化中发挥了负反馈作用,而这种转化是创面愈合的关键[16]。近年来还报道mircoRNA通过直接影响β-catenin的编码蛋白对Wnt/β-catenin信号通路抑制的作用[17]。Wnt分子通过旁分泌和自分泌的方式作用于细胞膜(目前已知Wnt蛋白家族成员中,能激活经典Wnt-β-catenin-LEF/TCF通路的有Wnt1[18-19]、Wnt3a[20]和Wnt8[3]),其中Wnt3a以β-catenin依赖的方式通过Smad2上调TGF-β,诱导肌成纤维细胞的分化[21]。Wnt分子与跨膜受体frizzelds及其共同受体低密度脂蛋白受体相关蛋白结合,进而降低β-catenin磷酸化的降解,使得β-catenin在细胞内聚集,最后进入细胞核与T细胞因子(T-cell factor ,Tcf)结合,激活下游靶基因,例如cyclin D1, c-Jun, c-myc, E-cadherin, and EGFR等[6,22-23]。Nguyen[24]研究显示Tcf3与Tcf4敲除小鼠表皮变薄,毛囊发育受阻,创面上皮化功能亦受到显著影响。因此,在正常皮肤中β-catenin表现为膜表达,而在进入细胞核后则表现为核表达。研究表明,β-catenin蛋白在创面愈合增殖期间质细胞中表达增高[25],并影响真皮成纤维细胞的增殖与迁移[26]。有另外的相反研究却显示,正常组织创面后β-catenin蛋白水平在4周后到达高峰,12周恢复到正常水平。增生性难愈性创面的β-catenin蛋白水平持续偏高并延长达2年。老鼠创面愈合模型研究表明,溃疡创面大小与β-catenin蛋白表达水平密切相关,β-catenin通过间接影响TGF-β效应影响创面愈合[27]。Stojadinovic[28]通过对难愈性溃疡与正常人皮肤相比较发现,慢性皮肤溃疡患者创面β-catenin核表达、c-myc蛋白表达明显增强。将溃疡创缘β-catenin核表达的角质形成细胞进行体外培养,发现其迁移能力与正常对照组相比显著降低。Carrie Fathke等[29]的研究进一步证实,异常激活的Wnt/β-catenin通路使毛囊间表皮细胞再生模式被诱导改变,上皮过度分化,形成表皮囊肿与不成熟的毛囊结构。其研究提示恰当的Wnt信号通路激活又诱使皮肤及其附属器再生的潜能。 β-catenin激活后的下游靶基因c-myc能够促进细胞从Go期进入S期,因而目前认为它可能与细胞的增殖及分化密切相关。在正常人表皮中,c-myc的表达仅局限在基底细胞层,提示c-myc可能与表皮干细胞分化存在某种内在关系。然而,有研究提示,在慢性皮肤溃疡中,c-myc则在表皮全层表达增强,失衡的c-myc可能使干细胞耗竭,而抑制细胞生长并刺激其终末分化[30]。还可导致细胞外骨架物质K6/K16蛋白降低,影响细胞迁移,不迁移的终末分化细胞堆积在创周阻碍上皮化形成。Saha 等[31]应用基因表达系列分析(serial analysis of gene expression,SAGE)筛选了多种靶基因后,发现c-myc基因可能是核内受异常Wnt信号转导途径调控的最重要的靶基因之一。而Wnt信号通路中最主要的成员即是β-catenin和靶基因c-myc[32]。
3 非经典Wnt信号通路与创面愈合
非经典Wnt信号通路,也即细胞极性通路和Ca2+-蛋白激酶A通路。该通路无需激活靶基因即可引起细胞效应,即直接作用于胞质效应蛋白。激活非经典Wnt信号通路的主要蛋白为Wnt5a与Wnt11。且Wnt5a能够以不依赖GSK-3β的方式,通过Siah2和APC降解β-catenin,从而和经典Wnt/β-catenin信号途径相互作用。
内皮细胞之间相互作用是影响创面血管增生与血管功能的重要因素。研究显示[33]VEGF与胎盘生长因子通过受体VEGFR-1促进血管增生,且两者具有协同效应。Cheng等[34]运用siRNA或Wnt5a拮抗剂阻断Wnt/Ca2+信号通路可抑制内皮细胞增殖与迁移,添加VEGF可纠正这一阻断现象。表明Wnt5a介导的非经典Wnt通路(Wnt/Ca2+)在内皮细胞增殖与迁移中发挥正面作用。此外,细胞因子刺激体外培养内皮细胞则可发现Wnt5a mRNA表达上调。Wnt5a介导下的Wnt/Ca2+信号通路可能通过调节内皮细胞生长而有助于炎性血管新生,并可成为治疗该类疾病的潜在靶点[34-35]。另一研究显示,黑素细胞迁移与侵袭能力增强与Wnt/Ca2+信号通路Wnt5a高表达有关,通过阻断Wnt5a受体Frizzled-5可以降低黑素细胞侵袭能力[36]。尽管有文献显示Wnt5a介导的Wnt/Ca2+通路对于不同的细胞起不同的作用,或促进或抑制。但大多数研究显示Wnt/Ca2+信号通路与经典Wnt/β-catenin信号通路存在拮抗效应,而前者能提高细胞迁移与增殖[37-39]。另外,Lyu [40]研究发现Wnt7a在角膜创面处快速升高,有利于角膜上皮增殖,促进创面愈合。Wnt7a使细胞膜内β-catenin聚集,激活Rac,后者协同转录MMP-12。在增殖区域上皮中检测到MMP-12,而在细胞迁移中心MMP-12则减少。阻断MMP-12功能表达,将使Wnt7a诱导的创面愈合显著延迟。
综上所述,Wnt信号通路与创面修复关系密切,涉及成纤维细胞[26]、角质形成细胞的增殖与迁移功能[41]、细胞外基质及胶原收缩[42]、血管新生[12]等诸多方面。近来的研究更加关注创面愈合过程中多种信号通路之间的相互作用,如Wnt信号通路与TGF-β信号通路[11,42],Wnt信号通路与整合素等之间的相互作用[43]。创面修复机制复杂,涉及诸多因素,深入了解创面修复不同时期、不同信号通路的相互作用,对于提高创面治愈率具有重要意义。
[参考文献]
[1]Cadigan KM,Nusse R.Wnt signaling: a common theme in animal development[J].Genes Dev,1997,11(24): 3286-3305.
[2]Nusse R,Varmus HE.Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome [J].Cell,1982,31(1):99-109.
[3]向阳,高基民,胡志明,等. Wnt基因的类别及功能[J].生命的化学,2007,27(2):138-141.
[4]Prestwich TC,Macdougald OA. Wnt/beta-catenin signaling in adipogenesis and metabolism [J].Curr Opin Cell Biol,2007,19(6): 612-617.
[5]Hu M,Kurobe M,Jeong YJ,et al.Wnt/beta-catenin signaling in murine hepatic transit amplifying progenitor cells [J].Gastroenterology,2007,133(5):1579-1591.
[6]Bienz M.beta-Catenin: a pivot between cell adhesion and Wnt signalling [J].Curr Biol,2005,15(2): R64-67.
[7]Katoh M,Katoh M.WNT signaling pathway and stem cell signaling network [J].Clin Cancer Res,2007,13(14): 4042-4045.
[8]DasGupta R,Kaykas A,Moon RT,et al.Functional genomic analysis of the Wnt-wingless signaling pathway [J]. Science,2005,308(5723): 826-833. [9]Fleming HE,Janzen V,Lo CC,et al. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo [J].Cell Stem Cell,2008,2(3):274-283.
[10]Sue NS,Mahmoudi T,Li VS,et al.MAP3K1 functionally interacts with Axin1 in the canonical Wnt signalling pathway [J].Biol Chem,2010,391(2-3):171-180.
[11]Carre AL,James AW,MacLeod L,et al.Interaction of wingless protein (Wnt), transforming growth factor-beta1, and hyaluronan production in fetal and postnatal fibroblasts[J]. Plast Reconstr Surg.2010, 125(1):74-88.
[12]Barcelos LS,Duplaa C,Krankel N,et al.Human CD133+ progenitor cells promote the healing of diabetic ischemic ulcers by paracrine stimulation of angiogenesis and activation of Wnt signaling [J].Circ Res,2009, 104(9):1095-1102.
[13]Chen CH,Dixon RA,Ke LY,et al.Vascular progenitor cells in diabetes mellitus: roles of Wnt signaling and negatively charged low-density lipoprotein [J].Circ Res,2009,104(9):1038-1040.
[14]Madoka S.Upregulation of the Wnt/β-catenin Pathway Induced by Transforming Growth Factor-βin Hypertrophic Scars and Keloids[J]. Acta Derm Venereol,2006,86:300-307.
[15]Maki H.Origins of spontaneous mutations: specificity and directionality of base-substitution, frameshift, and sequence-substitu tion mutageneses [J].Annu Rev Genet,2002,36:279-303.
[16]Liu J,Wang Y,Pan Q,et al. Wnt/β-catenin pathway forms a negative feedback loop during TGF-β1 induced human normal skin fibroblast-to-myofibroblast transition[J].J Dermatol Sci,2012,65(1):38-49.
[17]Su J,Zhang A.MicroRNA-200a suppresses the Wnt/β-catenin signaling pathway by interacting with β-catenin[J].Int J Oncol,2012,;40(4):1162-1170.
[18]Hlubek F,Brabletz T,Budczies J,et al.Heterogeneous expression of Wnt/beta-catenin target genes within colorectal cancer [J].Int J Cancer,2007,121(9):1941-1948.
[19]Manolagas SC,Almeida M.Gone with the Wnts: beta-catenin,T-cell factor,forkhead box O,and oxidative stress in age-dependent diseases of bone, lipid, and glucose metabolism [J].Mol Endocrinol,2007,21(11): 2605-2614.
[20]Jia L,Zhou J,Peng S,et al.Effects of Wnt3a on proliferation and differentiation of human epidermal stem cells [J].Biochem Biophys Res Commun,2008,368(3):483-488.
[21]Carthy JM,Garmaroudi FS.Wnt3a induces myofibroblast differentiation by upregulating TGF-β signaling through SMAD2 in a β-catenin-dependent manner[J]. PLoS One,2011,6(5):e19809.
[22]Bienz M.beta-Catenin: a pivot between cell adhesion and Wnt signalling [J].Curr Biol,2005,15(2): R64-67. [23]Anna CH,Iida M,Sills RC,et al.Expression of potential beta-catenin targets, cyclin D1, c-Jun, c-Myc, E-cadherin, and EGFR in chemically induced hepatocellular neoplasms from B6C3F1 mice [J].Toxicol Appl Pharmacol,2003,190(2):135-145.
[24]Nguyen H,Merrill BJ,Polak L,et al.Tcf3 and Tcf4 are essential for long-term homeostasis of skin epithelia [J].Nat Genet,2009,41(10):1068-1075.
[25]Sophia C,Roon P,Chunying Y,et al.Prolonged beta-catenin stabilization and tcf-dependent transcriptional activation in hyperplastic cutaneous wounds [J]. Laboratory Investigation,2005,85:416-425.
[26]Cheon SS,Cheah AY,Turley S,et al.beta-Catenin stabilization dysregulates mesenchymal cell proliferation, motility, and invasiveness and causes aggressive fibromatosis and hyperplastic cutaneous wounds [J].Proc Natl Acad Sci USA,2002,99(10): 6973-6978.
[27]Sophia S,Cheon QW,Ananta G,et al. Beta-catenin regulates wound size and mediates the effect of TGF-beta in cutaneous healing [J]. The FASEB J,2006,20(6):692-701.
[28]Stojadinovic O,Brem H,Vouthounis C,et al.Molecular pathogenesis of chronic wounds: the role of beta-catenin and c-myc in the inhibition of epithelialization and wound healing [J].Am J Pathol,2005,167(1): 59-69.
[29]Fathke C,Wilson L,Shah K,et al.Wnt signaling induces epithelial differentiation during cutaneous [J]. BMC Cell Biology. 2006. 7(4): 1741-1749.
[30]Brem H,Stojadinovic O,Diegelmann RF,et al. Molecular markers in patients with chronic wounds to guide surgical debridement [J].Mol Med,2007,13(1-2): 30-39.
[31]Saha S,Sparks AB,Rago C,et al. Using the transcriptome to annotate the genome [J]. Nat Biotechnol,2002, 20(5):508-512.
[32]Morin PJ,Sparks AB,Korinek V,et al.Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC [J].Science,1997,275(5307):1787-1790.
[33]Carmeliet P,Moons L,Luttun A,et al.Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions [J]. Nat Med, 2001,7(5):575-583.
[34]Cheng CW,Yeh JC,Fan TP,et al.Wnt5a-mediated non-canonical Wnt signalling regulates human endothelial cell proliferation and migration [J]. Biochem Biophys Res Commun,2008,365(2):285-290.
[35]Kurayoshi M,Oue N,Yamamoto H,et al.Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion [J].Cancer Res,2006,66(21): 10439-10448. [36]Weeraratna AT,Jiang Y,Hostetter G,et al.Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma [J].Cancer Cell,2002,1(3):279-188.
[37]Ishitani T,Kishida S,Hyodo-Miura J,et al.The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize Wnt/beta-catenin signaling [J].Mol Cell Biol,2003,23(1): 131-139.
[38]Kuhl M,Geis K,Sheldahl LC,et al.Antagonistic regulation of convergent extension movements in Xenopus by Wnt/beta-catenin and Wnt/Ca2+ signaling [J].Mech Dev,2001,106(1-2):61-76.
[39]Weidinger G, Moon RT. When Wnts antagonize Wnts [J]. J Cell Biol,2003,162(5): 753-755.
[40]Lyu J,Joo CK.Wnt-7a up-regulates matrix metalloproteinase-12 expression and promotes cell proliferation in corneal epithelial cells during wound healing [J].J Biol Chem,2005,280(22): 21653-21660.
[41]Stojadinovic O,Brem H,Vouthounis C,et al.Molecular pathogenesis of chronic wounds: the role of beta-catenin and c-myc in the inhibition of epithelialization and wound healing [J].Am J Pathol,2005,167(1): 59-69.
[42]Poon R,Nik SA,Ahn J,et al.Beta-catenin and transforming growth factor beta have distinct roles regulating fibroblast cell motility and the induction of collagen lattice contraction [J].BMC Cell Biol, 2009,10:38.
[43]Crampton SP,Wu B,Park EJ,et al.Integration of the beta-catenin-dependent Wnt pathway with integrin signaling through the adaptor molecule Grb2 [J]. PLoS One,2009,4(11): e7841.
[收稿日期]2012-04-09 [修回日期]2012-05-25
编辑/李阳利
1 Wnt信号通路简介
1973年,Sharma等[1]在对果蝇胚胎发育的研究中发现了无翅基因(Wingless)。1982年,Nusser等[2]对小鼠乳腺肿瘤研究时发现一种可以在细胞间传递增殖分化信号的蛋白质,当时称其为Intl。后经研究发现果蝇的无翅基因(Wingless)即为Wnt样基因,所以统一命名为Wnt1基因。迄今为止,包括Wnt1基因在内,在人和脊椎动物中共发现了19种Wnt基因[3]。这些基因编码Wnt蛋白家族,是一组富含半胱氨酸的分泌性糖蛋白。Wnt蛋白在多种组织细胞中均有表达,它们通过自分泌或旁分泌的方式激活膜受体而发挥作用。Wnt信号通路多种分泌型Wnt蛋白已被证明存在于从线虫到人类的多种生物中[4]。Wnt基因编码的Wnt蛋白及其受体、调节蛋白等一起组成了复杂的信号通路;称为Wnt信号转导通路。它与胚胎正常发育、细胞的增殖与分化以及肿瘤形成密切相关[5]。目前,研究显示Wnt信号转导通路有主要3条途径:①经典Wnt-β-catenin-LEF/TCF通路:这条通路激活后将募集细胞内的β-catenin,将后者活化后转移入细胞核,与转录因子LEF/TCF等共同作用激活特异基因的转录;②细胞极性通路:主要调控细胞骨架的重排;③Wnt/Ca2+通路:通过钙依赖性激酶、钙调蛋白和转录因子NF-AT(nuclear factor of activated T cell)起作用[6]。已有研究证实Wnt/β-catenin信号通路能促进创面愈合,Wnt信号通路相关糖蛋白也与创面愈合有密切关系[7]。
2 经典Wnt/β-catenin信号通路与创面愈合
既往研究显示Wnt信号通路主要与毛囊发育相关,是控制动物胚胎发育和组织器官形态发生的重要信号转导途径之一[8]。随着研究的深入,越来越多的证据显示,Wnt信号通路具有多种不同的生理功能,包括影响干细胞增殖与自我更新[9],与创面愈合也密切相关[10]。Carre等[11]采用Wnt3a腺病毒模拟激活经典Wnt信号通路,研究Wnt信号通路、TGF-β与透明质酸在创面愈合与瘢痕形成的关系。结果显示经典Wnt信号通路在新生小鼠皮肤创面表达明显增高,而在胚胎小鼠创面模型中未发现增高。重组Wnt3a模拟激活Wnt信号通路后能促进出生后小鼠成纤维细胞增殖,而对胚胎小鼠成纤维细胞却此无效。Wnt信号通路激活可使出生后小鼠成纤维细胞中HAS1和Hyal2基因表达增强,从而显著提高I型胶原表达。Barcelos[12-13]研究显示,CD133+祖细胞能激活Wnt信号通路,并通过旁分泌刺激内皮细胞增殖、迁移,促进血管增生而促进糖尿病缺血性溃疡愈合,同时,这一效应能被Wnt信号拮抗分子sFRP-1所阻断。在经典Wnt信号通路中,β-catenin是Wnt/β-catenin信号通路的重要组成部分,是控制动物胚胎发育和组织器官形态发生的重要信号转导途径元件之一[8]。正常情况下,成年机体Wnt基因则多处于相对静止状态。皮肤损伤后,TGF-β能暂时提高创面β-catenin表达。TGF-β通过Smad3和p38 MAPK 通路激活β-catenin介导的人上皮成纤维细胞转录,并且TGF-β在肥大瘢痕和瘢痕疙瘩中也诱导Wnt/β-catenin信号通路的上调[14]。β-catenin在真皮成纤维细胞核内持续增高,有利于成纤维细胞增殖与迁移,同时又反馈激活TGF-β信号通路。但在慢性皮肤溃疡中,这一过程因TGF-β信号通路持续激活而得到增强[15]。增强的Wnt/β-catenin信号通路在TGF-β1诱导的正常皮肤从成纤维细胞到肌成纤维细胞的转化中发挥了负反馈作用,而这种转化是创面愈合的关键[16]。近年来还报道mircoRNA通过直接影响β-catenin的编码蛋白对Wnt/β-catenin信号通路抑制的作用[17]。Wnt分子通过旁分泌和自分泌的方式作用于细胞膜(目前已知Wnt蛋白家族成员中,能激活经典Wnt-β-catenin-LEF/TCF通路的有Wnt1[18-19]、Wnt3a[20]和Wnt8[3]),其中Wnt3a以β-catenin依赖的方式通过Smad2上调TGF-β,诱导肌成纤维细胞的分化[21]。Wnt分子与跨膜受体frizzelds及其共同受体低密度脂蛋白受体相关蛋白结合,进而降低β-catenin磷酸化的降解,使得β-catenin在细胞内聚集,最后进入细胞核与T细胞因子(T-cell factor ,Tcf)结合,激活下游靶基因,例如cyclin D1, c-Jun, c-myc, E-cadherin, and EGFR等[6,22-23]。Nguyen[24]研究显示Tcf3与Tcf4敲除小鼠表皮变薄,毛囊发育受阻,创面上皮化功能亦受到显著影响。因此,在正常皮肤中β-catenin表现为膜表达,而在进入细胞核后则表现为核表达。研究表明,β-catenin蛋白在创面愈合增殖期间质细胞中表达增高[25],并影响真皮成纤维细胞的增殖与迁移[26]。有另外的相反研究却显示,正常组织创面后β-catenin蛋白水平在4周后到达高峰,12周恢复到正常水平。增生性难愈性创面的β-catenin蛋白水平持续偏高并延长达2年。老鼠创面愈合模型研究表明,溃疡创面大小与β-catenin蛋白表达水平密切相关,β-catenin通过间接影响TGF-β效应影响创面愈合[27]。Stojadinovic[28]通过对难愈性溃疡与正常人皮肤相比较发现,慢性皮肤溃疡患者创面β-catenin核表达、c-myc蛋白表达明显增强。将溃疡创缘β-catenin核表达的角质形成细胞进行体外培养,发现其迁移能力与正常对照组相比显著降低。Carrie Fathke等[29]的研究进一步证实,异常激活的Wnt/β-catenin通路使毛囊间表皮细胞再生模式被诱导改变,上皮过度分化,形成表皮囊肿与不成熟的毛囊结构。其研究提示恰当的Wnt信号通路激活又诱使皮肤及其附属器再生的潜能。 β-catenin激活后的下游靶基因c-myc能够促进细胞从Go期进入S期,因而目前认为它可能与细胞的增殖及分化密切相关。在正常人表皮中,c-myc的表达仅局限在基底细胞层,提示c-myc可能与表皮干细胞分化存在某种内在关系。然而,有研究提示,在慢性皮肤溃疡中,c-myc则在表皮全层表达增强,失衡的c-myc可能使干细胞耗竭,而抑制细胞生长并刺激其终末分化[30]。还可导致细胞外骨架物质K6/K16蛋白降低,影响细胞迁移,不迁移的终末分化细胞堆积在创周阻碍上皮化形成。Saha 等[31]应用基因表达系列分析(serial analysis of gene expression,SAGE)筛选了多种靶基因后,发现c-myc基因可能是核内受异常Wnt信号转导途径调控的最重要的靶基因之一。而Wnt信号通路中最主要的成员即是β-catenin和靶基因c-myc[32]。
3 非经典Wnt信号通路与创面愈合
非经典Wnt信号通路,也即细胞极性通路和Ca2+-蛋白激酶A通路。该通路无需激活靶基因即可引起细胞效应,即直接作用于胞质效应蛋白。激活非经典Wnt信号通路的主要蛋白为Wnt5a与Wnt11。且Wnt5a能够以不依赖GSK-3β的方式,通过Siah2和APC降解β-catenin,从而和经典Wnt/β-catenin信号途径相互作用。
内皮细胞之间相互作用是影响创面血管增生与血管功能的重要因素。研究显示[33]VEGF与胎盘生长因子通过受体VEGFR-1促进血管增生,且两者具有协同效应。Cheng等[34]运用siRNA或Wnt5a拮抗剂阻断Wnt/Ca2+信号通路可抑制内皮细胞增殖与迁移,添加VEGF可纠正这一阻断现象。表明Wnt5a介导的非经典Wnt通路(Wnt/Ca2+)在内皮细胞增殖与迁移中发挥正面作用。此外,细胞因子刺激体外培养内皮细胞则可发现Wnt5a mRNA表达上调。Wnt5a介导下的Wnt/Ca2+信号通路可能通过调节内皮细胞生长而有助于炎性血管新生,并可成为治疗该类疾病的潜在靶点[34-35]。另一研究显示,黑素细胞迁移与侵袭能力增强与Wnt/Ca2+信号通路Wnt5a高表达有关,通过阻断Wnt5a受体Frizzled-5可以降低黑素细胞侵袭能力[36]。尽管有文献显示Wnt5a介导的Wnt/Ca2+通路对于不同的细胞起不同的作用,或促进或抑制。但大多数研究显示Wnt/Ca2+信号通路与经典Wnt/β-catenin信号通路存在拮抗效应,而前者能提高细胞迁移与增殖[37-39]。另外,Lyu [40]研究发现Wnt7a在角膜创面处快速升高,有利于角膜上皮增殖,促进创面愈合。Wnt7a使细胞膜内β-catenin聚集,激活Rac,后者协同转录MMP-12。在增殖区域上皮中检测到MMP-12,而在细胞迁移中心MMP-12则减少。阻断MMP-12功能表达,将使Wnt7a诱导的创面愈合显著延迟。
综上所述,Wnt信号通路与创面修复关系密切,涉及成纤维细胞[26]、角质形成细胞的增殖与迁移功能[41]、细胞外基质及胶原收缩[42]、血管新生[12]等诸多方面。近来的研究更加关注创面愈合过程中多种信号通路之间的相互作用,如Wnt信号通路与TGF-β信号通路[11,42],Wnt信号通路与整合素等之间的相互作用[43]。创面修复机制复杂,涉及诸多因素,深入了解创面修复不同时期、不同信号通路的相互作用,对于提高创面治愈率具有重要意义。
[参考文献]
[1]Cadigan KM,Nusse R.Wnt signaling: a common theme in animal development[J].Genes Dev,1997,11(24): 3286-3305.
[2]Nusse R,Varmus HE.Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome [J].Cell,1982,31(1):99-109.
[3]向阳,高基民,胡志明,等. Wnt基因的类别及功能[J].生命的化学,2007,27(2):138-141.
[4]Prestwich TC,Macdougald OA. Wnt/beta-catenin signaling in adipogenesis and metabolism [J].Curr Opin Cell Biol,2007,19(6): 612-617.
[5]Hu M,Kurobe M,Jeong YJ,et al.Wnt/beta-catenin signaling in murine hepatic transit amplifying progenitor cells [J].Gastroenterology,2007,133(5):1579-1591.
[6]Bienz M.beta-Catenin: a pivot between cell adhesion and Wnt signalling [J].Curr Biol,2005,15(2): R64-67.
[7]Katoh M,Katoh M.WNT signaling pathway and stem cell signaling network [J].Clin Cancer Res,2007,13(14): 4042-4045.
[8]DasGupta R,Kaykas A,Moon RT,et al.Functional genomic analysis of the Wnt-wingless signaling pathway [J]. Science,2005,308(5723): 826-833. [9]Fleming HE,Janzen V,Lo CC,et al. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo [J].Cell Stem Cell,2008,2(3):274-283.
[10]Sue NS,Mahmoudi T,Li VS,et al.MAP3K1 functionally interacts with Axin1 in the canonical Wnt signalling pathway [J].Biol Chem,2010,391(2-3):171-180.
[11]Carre AL,James AW,MacLeod L,et al.Interaction of wingless protein (Wnt), transforming growth factor-beta1, and hyaluronan production in fetal and postnatal fibroblasts[J]. Plast Reconstr Surg.2010, 125(1):74-88.
[12]Barcelos LS,Duplaa C,Krankel N,et al.Human CD133+ progenitor cells promote the healing of diabetic ischemic ulcers by paracrine stimulation of angiogenesis and activation of Wnt signaling [J].Circ Res,2009, 104(9):1095-1102.
[13]Chen CH,Dixon RA,Ke LY,et al.Vascular progenitor cells in diabetes mellitus: roles of Wnt signaling and negatively charged low-density lipoprotein [J].Circ Res,2009,104(9):1038-1040.
[14]Madoka S.Upregulation of the Wnt/β-catenin Pathway Induced by Transforming Growth Factor-βin Hypertrophic Scars and Keloids[J]. Acta Derm Venereol,2006,86:300-307.
[15]Maki H.Origins of spontaneous mutations: specificity and directionality of base-substitution, frameshift, and sequence-substitu tion mutageneses [J].Annu Rev Genet,2002,36:279-303.
[16]Liu J,Wang Y,Pan Q,et al. Wnt/β-catenin pathway forms a negative feedback loop during TGF-β1 induced human normal skin fibroblast-to-myofibroblast transition[J].J Dermatol Sci,2012,65(1):38-49.
[17]Su J,Zhang A.MicroRNA-200a suppresses the Wnt/β-catenin signaling pathway by interacting with β-catenin[J].Int J Oncol,2012,;40(4):1162-1170.
[18]Hlubek F,Brabletz T,Budczies J,et al.Heterogeneous expression of Wnt/beta-catenin target genes within colorectal cancer [J].Int J Cancer,2007,121(9):1941-1948.
[19]Manolagas SC,Almeida M.Gone with the Wnts: beta-catenin,T-cell factor,forkhead box O,and oxidative stress in age-dependent diseases of bone, lipid, and glucose metabolism [J].Mol Endocrinol,2007,21(11): 2605-2614.
[20]Jia L,Zhou J,Peng S,et al.Effects of Wnt3a on proliferation and differentiation of human epidermal stem cells [J].Biochem Biophys Res Commun,2008,368(3):483-488.
[21]Carthy JM,Garmaroudi FS.Wnt3a induces myofibroblast differentiation by upregulating TGF-β signaling through SMAD2 in a β-catenin-dependent manner[J]. PLoS One,2011,6(5):e19809.
[22]Bienz M.beta-Catenin: a pivot between cell adhesion and Wnt signalling [J].Curr Biol,2005,15(2): R64-67. [23]Anna CH,Iida M,Sills RC,et al.Expression of potential beta-catenin targets, cyclin D1, c-Jun, c-Myc, E-cadherin, and EGFR in chemically induced hepatocellular neoplasms from B6C3F1 mice [J].Toxicol Appl Pharmacol,2003,190(2):135-145.
[24]Nguyen H,Merrill BJ,Polak L,et al.Tcf3 and Tcf4 are essential for long-term homeostasis of skin epithelia [J].Nat Genet,2009,41(10):1068-1075.
[25]Sophia C,Roon P,Chunying Y,et al.Prolonged beta-catenin stabilization and tcf-dependent transcriptional activation in hyperplastic cutaneous wounds [J]. Laboratory Investigation,2005,85:416-425.
[26]Cheon SS,Cheah AY,Turley S,et al.beta-Catenin stabilization dysregulates mesenchymal cell proliferation, motility, and invasiveness and causes aggressive fibromatosis and hyperplastic cutaneous wounds [J].Proc Natl Acad Sci USA,2002,99(10): 6973-6978.
[27]Sophia S,Cheon QW,Ananta G,et al. Beta-catenin regulates wound size and mediates the effect of TGF-beta in cutaneous healing [J]. The FASEB J,2006,20(6):692-701.
[28]Stojadinovic O,Brem H,Vouthounis C,et al.Molecular pathogenesis of chronic wounds: the role of beta-catenin and c-myc in the inhibition of epithelialization and wound healing [J].Am J Pathol,2005,167(1): 59-69.
[29]Fathke C,Wilson L,Shah K,et al.Wnt signaling induces epithelial differentiation during cutaneous [J]. BMC Cell Biology. 2006. 7(4): 1741-1749.
[30]Brem H,Stojadinovic O,Diegelmann RF,et al. Molecular markers in patients with chronic wounds to guide surgical debridement [J].Mol Med,2007,13(1-2): 30-39.
[31]Saha S,Sparks AB,Rago C,et al. Using the transcriptome to annotate the genome [J]. Nat Biotechnol,2002, 20(5):508-512.
[32]Morin PJ,Sparks AB,Korinek V,et al.Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC [J].Science,1997,275(5307):1787-1790.
[33]Carmeliet P,Moons L,Luttun A,et al.Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions [J]. Nat Med, 2001,7(5):575-583.
[34]Cheng CW,Yeh JC,Fan TP,et al.Wnt5a-mediated non-canonical Wnt signalling regulates human endothelial cell proliferation and migration [J]. Biochem Biophys Res Commun,2008,365(2):285-290.
[35]Kurayoshi M,Oue N,Yamamoto H,et al.Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion [J].Cancer Res,2006,66(21): 10439-10448. [36]Weeraratna AT,Jiang Y,Hostetter G,et al.Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma [J].Cancer Cell,2002,1(3):279-188.
[37]Ishitani T,Kishida S,Hyodo-Miura J,et al.The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize Wnt/beta-catenin signaling [J].Mol Cell Biol,2003,23(1): 131-139.
[38]Kuhl M,Geis K,Sheldahl LC,et al.Antagonistic regulation of convergent extension movements in Xenopus by Wnt/beta-catenin and Wnt/Ca2+ signaling [J].Mech Dev,2001,106(1-2):61-76.
[39]Weidinger G, Moon RT. When Wnts antagonize Wnts [J]. J Cell Biol,2003,162(5): 753-755.
[40]Lyu J,Joo CK.Wnt-7a up-regulates matrix metalloproteinase-12 expression and promotes cell proliferation in corneal epithelial cells during wound healing [J].J Biol Chem,2005,280(22): 21653-21660.
[41]Stojadinovic O,Brem H,Vouthounis C,et al.Molecular pathogenesis of chronic wounds: the role of beta-catenin and c-myc in the inhibition of epithelialization and wound healing [J].Am J Pathol,2005,167(1): 59-69.
[42]Poon R,Nik SA,Ahn J,et al.Beta-catenin and transforming growth factor beta have distinct roles regulating fibroblast cell motility and the induction of collagen lattice contraction [J].BMC Cell Biol, 2009,10:38.
[43]Crampton SP,Wu B,Park EJ,et al.Integration of the beta-catenin-dependent Wnt pathway with integrin signaling through the adaptor molecule Grb2 [J]. PLoS One,2009,4(11): e7841.
[收稿日期]2012-04-09 [修回日期]2012-05-25
编辑/李阳利