其他文献
合理推理在数学教学中的作用与意义正越来越多地受到重视,新课程标准的教学目标中也增加了发展合理推理能力.而合理推理问题比较难,所以学生往往会在这个上面失分,本文先来说什么是合理推理,然后论述其破解策略. 一、什么是合理推理 合理推理是与合情推理并列的推理,但是又有区别,合理推理主要是演绎推理,基本方法包括:演绎三段论、选言推理、假言推理、关系推理等形式.三段论是演绎推理的一般模式,包含三个部分:
“学起于思,思源于疑”,疑问是思维的火花,思维应从问题开始.日常课堂教学中最经常、最普遍的课堂提问将教师、学生、教材三者有机结合,是师生课堂交流的主要方式. 一、创设合适的问题情境 ,营造和谐的提问氛围 在数学教学中,我们要创设问题情境,把学生的思维带入新的学习背景中,让他们感到学习是解决新问题的需要.在课堂设计问题时,我们应根据教学内容作合适的设计,并依据教学目标和学生实际选择最佳的问题情境
卤代烃是指烃分子中的氢原子被卤素原子取代后所生成的化合物,属于烃的衍生物,它的官能团为卤素原子,因此卤素原子决定了卤代烃的化学性质.卤代烃分子中,由于卤素原子吸引电子能力大于碳原子,碳原子和卤素原子之间的共用电子对偏向卤素原子一边,C—X键是极性键,在化学反应中容易断裂,所以卤代烃的化学性质通常比烃活泼,能发生许多化学反应,如取代反应、消去反应,从而转化成其他各种类型的化合物,因此它常常作为有机化
分析2:在此题中因为△ABC为直角三角形,所以可以通过建立直角坐标系,利用解析的方法来求角.以下我们通过建立直角坐标系,从两个知识点出发进行求解. 范围内变化,所以夹角正切值大于或等于0.故可以由l1到l2的角取绝对值而得到l1与l2的夹角公式.这一公式由夹角定义可得.
根据上述反应可知:当某无机物气体为CO或H2或CO、H2的混合物时,该气体(或气体混合物)燃烧后所得气体或混合气体(100℃以上)通过足量的Na2O2时,Na2O2固体增重的质量为该气体(或气体混合物)的质量。
当几列波同时在一种介质中传播时,每列波的特征量如振幅、频率、波长、振动方向等,都不会因为有其他波的存在而改变,例如,从两个探照灯射出的光波,交叉后仍然按原来方向传播,彼此互不影响,乐队合奏或几个人同时谈话时,声波也并不因在空间互相交叠而变成另外一种什么声音,所以我们能够辨别出各种乐器或各人的声音来,波的这种独立性,使得当几列波在空间的某一点相遇时,每列波都单独引起介质中该处质元的振动,并不因其他波
学习能力的培养,是数学教学活动的出发点和落脚点,是新课标下能力目标培养的重要内容和根本任务,“问题”作为数学的“心脏”,体现了数学学科知识体系的“精髓”,已成为数学学科学习能力素养培养的重要载体和平台。
高中生在学习新知内涵、解答疑难问题过程中,需要借助于其他学生的“智慧”和“力量”,在合作互助的学习过程中,实现学习技能和学习水平的有效提升,同时,新实施的高中数学课程标准也提出了培养学生合作学习能力的目标要求,本文作者根据教学经验,结合平面向量章节教学内容,对合作性教学策略的运用,从三个方面进行了简要论述。
运用数学工具解决物理问题的能力是物理考试中必须具备的能力之一,其中极值问题所涉及的范围比较广,相关联的习题也比较多,同时还是高考考查的热点,应该引起老师和学生足够的重视,学生在处理有关极值的问题时方法比较少,老师应该在习题中提供多种求极值的方法,以防学生在遇到相关题目类型时不知如何下手,为了能熟练的求出不同情况下物理量的极值,除了要弄清楚基本概念、掌握基本规律以外,还要熟练掌握解决极值的方法。
一、1. (B)(C) 2.(B) 3. (D) 4.(C) 5.(A)(C) 6.(D) 7.(D) 8.(C) 9.(B) 10.(A)(D) 11.(A) 12.(A)(D) 13.(A)(C)(D) 14.(D)