论文部分内容阅读
支持向量机是近年来提出的一种新的机器学习算法,它能针对在样本有限的情况,采用结构风险最小化准则,把学习问题转化为一个二次规划问题来获得最优解,从而克服了神经网络易陷于局部极小值的缺点。尝试将支持向量机算法应用于径流预测,并与BP神经网络方法的预测结果进行了对比,证明SVM方法预测径流量精度要略优于BP神经网络方法。