基于步态识别的视频侦查技术与应用

来源 :中国人民公安大学学报(自然科学版) | 被引量 : 0次 | 上传用户:tomato20099002
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
步态是远距离复杂视频监控场景下唯一可清晰成像的生物特征,具有识别范围广、难以伪装等优点。为探索视频图像智能化应用,发掘海量视频资源的潜在价值,开发了步态应用实战平台,利用步态识别技术破解视频监控条件下人员身份识别难和轨迹刻画难等难题,为侦查破案、人员管控等提供新手段。采用先进的深度学习步态识别方法,完成步态检测,序列跟踪,步态分割和识别比对等一系列关键环节和步骤。为验证步态识别技术的效果,在含10万段实战场景步态序列的数据库上测试,步态识别的top 1命中率可超过96%。在100万段实战场景步态序列
其他文献
车辆目标跟踪是实现车联网不可或缺的一环,旨在获取车辆的动态信息,以提高交通运行效率。其核心是对大量监控探头采集的视频图像进行分析处理,实现车辆的实时检测与跟踪。为了进一步提高目标检测效率,降低硬件成本,文中提出了基于二帧差分法的前景检测方法,以及基于质心法的车辆轮廓检测与跟踪方法。基于OpenCV3.4.1和VS2017进行验证实验和仿真测试,结果表明,该算法对车辆跟踪的精确率达到89.1%,平均
期刊
限速标志识别是智能驾驶的重要组成部分,文中分析了现有方法存在的问题,为了提高神经网络在中国限速标志上的泛用性和准确率,针对限速标志的检测部分,提出了一种基于颜色空间的新型筛选方法;针对限速标志的识别部分,在现有LeNet-5架构的基础上对神经网络进行了改进,并将德国交通标志数据集(GTSRB)和清华交通标志数据集(TT100K)中限速标志数据融合,经过数据扩增后制作成新的数据集送入神经网络来训练模
期刊
能见度检测是计算机视觉与交通视频图像处理的热点问题。针对传统检测方法存在硬件成本高、适用范围小、检测效率低等不足,给出一种利用透射率和场景深度获取单幅图像能见度的检测方法。首先根据Koschmieder定律和ICAO推荐的对比阈值推导出能见度检测公式,然后根据大气衰减模型得到消光系数,利用暗通道先验理论获取透射率值,结合SFS(从阴影恢复形状)和双目模型获取场景深度值,最后通过求解消光系数反演图像
期刊