论文部分内容阅读
Osteosarcoma is primary malignant neoplasms derived from cells of mesenchymal origin, and often has distinct phenotypes at different stages. The location of tumor and reaction zone can be identified by an expert in magnetic resonance imaging (MRI), with MRI being one of the choices for evaluating the extent of osteosarcoma. However, it is still a challenge to automatically extract tumor from its surrounding tissues because of their low intensity differences in MRI. We investigated an approach based on Zernike moment and support vector machine (SVM) for osteosarcoma segmentation in T1-weighted image (TIWI). Firstly, the different order moments around each pixel are calculated in small windows. Secondly, the grayscale and the module values of different order moments are used as a texture feature vector which is then used as the training set for SVM. Finally, an SVM classifier is trained based on this set of features to identify the osteosarcoma, and the segmented tumor tissue is rendered in 3D by the ray casting algorithm based on graphics processing unit (GPU). The performance of the method is validated on T1WI, showing that the segmentation method has a high similarity index with the expert’s manual segmentation.
Osteosarcoma is primary malignant neoplasms derived from cells of mesenchymal origin, and often has distinct phenotypes at different stages. The location of tumor and reaction zone can be identified by an expert in magnetic resonance imaging (MRI), with MRI being one of the choices for Yet, it is still a challenge to automatically extract the tumor from its surrounding tissues because of their low intensity differences in MRI. We investigated the extent of osteosarcoma segmentation in T1 Firstly, the different order moments around each pixel are calculated in small windows. Secondly, the grayscale and the module values of different order moments are used as a texture feature vector which is then used as the training set for SVM. Finally, an SVM classifier is trained based on this set of features to identify the osteosarcoma, and the segmented tumor tissue is rendered in 3D by the ray casting algorithm based on graphics processing unit (GPU). The performance of the method is validated on T1WI, showing that the segmentation method has a high similarity index with the expert’s manual segmentation.