论文部分内容阅读
基于机器学习的无参考图像质量评价方法依赖于大量训练样本,但训练数据集的构建需要耗费大量人力物力。依据迁移学习理论,面向上述问题,首先提出了一种基于改进加权多源TrAdaBoost(weighted multisource TrAdaBoost,WMTrA)算法。算法的无参考图像质量评价算法采用权重自动更新方式,挖掘辅助图像库中的有价值样本,只需少量目标图像库样本便可以建立准确的图像质量评价模型;然后,将它应用到无参考图像质量评价方法上,检测了其效果。在JPEG,JPEG2000失真图像上的评价结果表