论文部分内容阅读
针对蛇形机器人中枢模式发生器(CPG)控制中控制信号以及传感信息缺少选择依据的问题,提出了一种融合了机械元的循环抑制CPG控制方法.首先,将蛇形机器人本体动力学方程改造为机械元引入循环抑制CPG模型.其次,提出了改进的Matsuoka神经元,从而使得神经元与机械元具有一致的表达形式.再次,分析了融入机械元的循环抑制CPG模型中的参数关系,并给出了控制信号和传感信息与CPG状态量关系的表达式.最后,利用仿真对所提出的方法进行了验证,并对产生结果进行了分析.该方法中蛇形机器人的控制信号与传感信息都具有明确的定义,且由于用机械元的物理结构代替了神经元的计算,降低了CPG的计算量.
In order to solve the problem of lack of selection of control signal and sensor information in the control of CPG (Serpentine Robot) Central Controller (CPG), a cyclical suppression CPG control method based on mechanical element is proposed.First, The CPG model is introduced to the mechanical element.Secondly, an improved Matsuoka neuron is proposed to make the neuron and the mechanical element have the same expression form.Furthermore, the parametric relationship of the CPG model incorporated into the mechanical element is analyzed, And gives the expressions of the relationship between the control signal and the sensing information and the CPG state quantity.Finally, the proposed method is verified by simulation and the resulting results are analyzed.The control signals of the serpentine robot and Sensing information has a well-defined definition, and because of the mechanical structure of the mechanical element instead of the calculation of neurons, CPG reduces the amount of computation.