论文部分内容阅读
关联规则挖掘是数据挖掘领域中最重要的研究问题之一。Apriori是关联规则挖掘的一种经典算法,它使用候选项集产生测试机制来找出所有满足用户最小支持度的项集,但它需要多次扫描数据库,会产生大量的候选项集。针对Apriori算法的不足,提出了一种基于混合型新的优化算法:Apriori—Mend算法。该算法从优化产生2项集、事务压缩等几个方面对Apriori算法进行优化,将散列技术应用于产生1项集和2项集,采用库优化策略和混合型存储结构,以节省空间和运算时间。实验结果表明,Apriori—Mend算法运行速度比