实对称五对角矩阵的两类广义特征值反问题

来源 :应用数学与计算数学学报 | 被引量 : 0次 | 上传用户:johnason1111
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
讨论了如下两类广义特征值反问题:(i)由给定的三个互异的特征对和给定的实对称正定五对角矩阵构造一个实对称五对角矩阵;(ii)由给定的三个互异特征对和给定的全对称正定五对角矩阵构造一个全对称五对角矩阵.利用线性方程组理论、对称向量和反对称向量的性质,分别得到了两类反问题存在唯一解的充要条件,并给出了解的表达式和数值算法;最后通过数值例子说明了算法的有效性.
其他文献
基于修正的埃尔米特和反埃尔米特分裂(MHSS)及预处理的MHSS(PMHSS)迭代法,提出了关于一类复对称线性方程组的单步MHSS(SMHSS)和单步PMHSS(SPMHSS)迭代法,进一步利用优化技巧给出了位移
研究平面上一类严格凸曲线流( F(u,t))/( t)=(p(u,t)-Φ(t))N(u,t),F(u,t)是平面上的曲线族,p(u,t)是支撑函数,Φ(t)是C∞光滑函数,N(u,t)是单位内法向量.当初始曲线F(u,0)严格凸并且Φ(t)满足适当条件
全局优化是最优化的一个分支,非线性整数规划问题的全局优化在各个方面都有广泛的应用.填充函数是解决全局优化问题的方法之一,它可以帮助目标函数跳出当前的局部极小点找到
利用直接法将柱KdV方程超对称化.通过适当的变换,利用双线性方法将超对称柱KdV方程双线性化,由超对称Hirota双线性导数法构造出超对称柱KdV方程的单孤子解、双孤子解、三孤子解
对于求解大规模二次特征值问题,叶强提出了一种迭代shift—and—invertArnoldi投影算法(YeQ.Aniteratedshift—and—invertArnoldialgorithmforquadraticmatrixeigenvalueproble
提出用概率协同表示(probabilistic collaborative representation-based classifier,ProCRC)的方法生成权重系数对所提取的动作特征进行更新.首先,利用深度学习的思想将人体
Adomian分解方法是解微分方程的一种分析方法.基于Adomian分解方法和修正的渐近Adomian分解方法,给出了多步修正的渐近Adomian分解方法.指出修正的渐近Adomian分解方法可以给出
研究一维有界区间上的非牛顿流体.假设初始条件满足相容性条件,得到了带有Ellis粘性结构的非牛顿流解的存在唯一性.
主要研究了一类带有非负的非线性源的拟线性双曲守恒律方程的Cauchy问题,其中初值为有限Borel测度.克服了初值和非线性项带来的阻碍,得到了局部BV解的存在唯一性.