论文部分内容阅读
作为遥感研究的关键技术,遥感影像分类一直是遥感研究热点;针对目前采用BP神经网络模型进行遥感影像分类时存在的对初始权阈值敏感、易陷入局部极值和收敛速度慢的问题,为了提高BP模型遥感影像分类精度,将自适应遗传算法引入到BP网络模型参数选择中;首先运用自适应遗传算法对BP模型权阈值参数进行初始寻优,再用改进BP算法对优化的网络模型权阈值进一步精确优化,随后建立基于自适应遗传算法的BP网络分类模型,并将其应用到遥感影像数据分类研究中;仿真结果表明,新模型有效提高了遥感影像分类准确性,为遥感影像分类提出了一