论文部分内容阅读
针对TLD(Tracking-Learning-Detection)算法在光照变化不均、遮挡严重、跟踪目标模糊等情况下会出现跟踪失败的问题,提出一种基于卷积神经网络优化TLD运动手势跟踪算法。选取手势特征作正样本,其背景作负样本,获取手势HOG特征并投入到卷积神经网络中加以训练,得到手势检测分类器,从而确定目标手势区域,实现手势的自动识别;再利用TLD算法对手势进行跟踪与学习,对正负样本进行估计检测并实时校正,同时运用SURF特征匹配更新跟踪器。实验结果验证,该算法对比TLD经典算法跟踪精度提高了4