基于深度强化学习的居民实时自治最优能量管理策略

来源 :电力系统自动化 | 被引量 : 0次 | 上传用户:zjundu1980
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着居民分布式资源的普及,如何考虑用户多类型设备的运行特性,满足实时自治能量管理需求以达到用户侧经济性最优成为亟待解决的课题.传统基于模型的最优化方法在模型精准构建和应对多重不确定性等方面存在局限性,为此提出一种无模型的基于深度强化学习的实时自治能量管理优化方法.首先,对用户设备进行分类,采用统一的三元组描述其运行特性,并确定相应的能量管理动作;接着,采用长短期记忆神经网络提取环境状态中多源时序数据的未来走势;进而,基于近端策略优化算法,赋能在多维连续-离散混合的动作空间中高效学习最优能量管理策略,在最小化用电成本的同时提升策略对不确定性的适应性;最后,通过实际情境对比现有方法的优化决策效果,验证所提方法的有效性.
其他文献
随着交直流混联电网规模的扩大与电力电子化设备的大规模并网,以新能源为主体的新型电力系统的动态特性愈加复杂.物理模型的机理可解释性与数据模型的特性拟合能力具有很强的互补性.如何将融合模型的构建从定性分析向定量分析提升亟待深入研究.文中基于电力系统中数据方法与物理方法的特点,针对4种典型数据-物理融合模型分析了其相对应的应用场景;以并联模式为研究对象,分别对比分析了并联模式与单一物理模型和单一数据模型的泛化误差,并提出了融合模型参数的选取方法;推导了并联模式下融合模型的泛化误差上限,并提出了改进融合模型性能的
针对三相交流牵引供电系统进行牵引网阻抗计算,该三相交流牵引供电系统采用一种新型的受电犁供电方式,其中使用的供电轨为不规则导体,采用有限元仿真软件ANSYS对供电轨阻抗进行仿真,得到其阻抗及等效半径,进而采用多导体回路法得到了三相交流牵引供电系统的牵引网阻抗,为新型牵引供电系统的系统阻抗求解问题提供了解决思路,对牵引供电系统建模及供电能力计算具有重要意义.
对拓扑结构进行优化可提高电力系统运行灵活性,然而线路开断与变电站母线分裂等系统级的离散决策变量维度极高.该拓扑结构优化问题难以由传统混合整数优化方法求解.针对该问题,提出了一种结合异步优势Actor-Critic(A3C)深度强化学习与电力系统领域知识的运行优化方法,将在线优化的计算负担转移至离线智能体训练阶段.该方法通过同时考虑拓扑结构与发电出力调整的动作空间设计系统运行控制智能体,以最小化约束越限为训练奖励,通过强制约束校验缩减搜索空间并提高强化学习效率,从而实现电力系统运行拓扑结构优化的快速计算,提
传统电网运行方式下制定输电断面限额时,为保证安全性,主要考虑最严重电网运行方式.这种处理方式不能适应高占比新能源电网运行方式复杂多变的特点,存在包含运行方式情景不足和安全裕度过大等问题.为此,提出新能源接入电网的断面传输方式聚类分析方法.首先,基于历史统计信息找出电网关键断面,并通过相关性分析挖掘出影响电网关键通道传输能力的关联因素;然后,根据关联度指标对关键因素进行排序,并根据排序靠前的关键因素对电网运行方式进行聚类划分;接着,依据聚类划分结果对该边界方式下各级断面输电限额进行优化,以提升电网输送能力.