论文部分内容阅读
摘 要:可靠性保障网络是无故障运行能力,扩展性是指网络技术或设备随着用户和业务需求的增加而扩充的能力,本文以某职业院校的新校区的网络规划建设为例论述扩展性、可靠性的重要性。文章从网络拓朴结构设计、IRF技术应用、IP 地址规划设计等方面对网络规划设计中的可靠性、扩展性问题进行了阐述和论述。
关键词:校园网络;规划设计;扩展性;可靠性
某高职高专院校新校区峻工,该学院新校区占地面积两千多亩,有4栋教学楼,16栋宿舍楼,1栋图书馆大楼2栋食堂,6个实验室大楼等建筑构成。由于老校区在城市规划中已不覆存在没有与老校区互联的情况,该校院网络规划建设目标是建设一个以办公自动化、计算机辅助教学、现代计算机校园文化为核心,以现代网络技术为依托,技术先进、扩展性强、能覆盖全院主要楼宇的校园主干网络。
1、校园网络系统结构
校园的规模比较大,普通的平面结构难以满足校园网设计的需求;因此选用层次型网络设计模型,由于其结构清晰具有很好的扩展性,易于实现,易于排除故障、冗余性好、易于排除故障易于管理等特点,可充分满足校园网的需求。根据以上分析及学院的现状及未来需求,校园网采用了万兆以太网技术,网络结构分为三层,分别是核心层、汇聚层、接入层。汇聚层通过1000M冗余链路,分别连接到核心设备上,以提高网络的稳定性;接入设备与1000M汇聚层连接具有很好的接入控制能力。
1.1 基于IRF技术的核心层设计
核心层作为校园的交换中枢,必须具备可靠、高性能无阻塞转发能力,能够提供强大的交换能力和冗余备份.并能方便地进行管理和扩充。为此核心层设计采用IRF技术华为S9500系列万兆交换机组成,IRF技术主要包括分布设备管理、分布冗余路和分布链路聚合3方面的技术在外界看来整个FABRIC是一个整体虚拟设备,在某一设备发生故障时路由协议和数据转发都可以不中断。充分保障了核心层的无故障运行能力,并且支持IRF的设备可以使用户的投资得到更多的回报,1:N设备的高扩展、高可靠性。
1.2 汇聚层设计
汇聚层是网络接入层和核心层的“中介”,汇聚层上连接到核心层交换机,下连接入交换机,为终端用户提供高性能的千兆骨干链路,满足接人信息点不断扩充和信息量日益增加的需要。为实现高可靠性汇聚层与核心层的连接采用两条链路与核心层的两台核心交换机连接,以减轻单台核心交换机的负荷,从而实现网络系统的快速、高效、稳定、可靠,因此汇聚层交换机与接入层交换机比较,需要更高的性能,更少的接口和更高的交换速率,根据我院楼宇建筑分布情况,汇聚层交换机架设在学校各教学楼、办公楼、实训楼、图书馆、学生宿舍各楼宇工作间。
1.3 接入层设计
网络中直接面向用户连接或访问网络的部分称为接入层,接入层目的是允许终端用户连接到网络,为用户提供了在本地网段访问应用系统的能力,因此接入层交换机具有低成本和高端口密度特性,在接入层设计上主张使用性能价格比高的设备。另外还要考虑安全方面的需求和管理方面面的功能,(如地址认证、用户认证、计费管理等),以及用户信息收集工作(如用户的IP地址、MAC地址、访问日志等)。
1.4 与国际互联网的互联
申请了两条链路实现跟外网的连接。网络的出口有两条线路,一条线路通过本地教育城域网,一条线路连接到中国电信1000M公用广域网,在其中部署防火墙和路由器实现安全隔离。
另外IRF技术本身是交换网络的简化和优化技术,但在当前网络安全集成一体化的趋势下,以IRF架构来进一步简化网络安全服务的部署,是当前提供可用的最佳实践指导的基本内容。IRF交换网络与防火墙组合设计IRF交换网络与IPS组合设计等等这些技术极大地简化网络设备与安全设备之间的对接设计,进一步提升了网络的可靠性和安全性,另一方面与市公安局网上110 联网,及时处理安全事故能够,下载安全规则。
2 校园网络的扩展性,可靠性设计
可靠性是保障网络无故障运行的能力、可扩展性需求决定了新设计的网络系统适应用户未来发展的能力。网络系统的可靠性、可扩展性主要体现在网络拓扑结构,与络网络设备运用的相应技术,以及 IP 地址的规划等方面。
2.1网络拓扑结构设计以及IRF技术在设备扩展性和可靠性方面的应用
由于校园网规模大,普通的拓扑结构难以满足需要,所以校园网建设采用层次(三层接入层、汇聚层、核心层)模型,将网络划分成不同的层次各个层次各司其职,另外层次模型,结构清晰、性能好、有良好的收缩能力,易于排出故障、冗余性好、易管理等特点有良好的扩展性和可靠性。
在本项目中,由于信息点较多且分布较广,同时基础设施建设还在完善中,为了将来网络的易于管理,扩展和升级,采用基于IRF 技术的多核心结构进行设计,在核心层进行横向整合这种IRF 技术的多核心结构,保证了整个网络的稳定性和解决了端口扩展和交换能力,同时增强了设备的可靠性。
采用基于IRF技术的多核心可靠性主要体现在,各接入层内部通讯量大,无需通过核心处理时(内部网络游戏等),采用层次结构更加合理,更强的预防和控制,对网络攻击、病毒和破坏尽量控制在边缘完成,网络层次结构更加完善、可汇总路由,降低核心路由表项,采用链路冗余设计, IRF主备切换时间实现毫秒级切换,降低了故障中断时间.保证整个网络稳定提供高设备和性能的高可靠性。
网络设备的扩展性主要体现在交换机的端口类型和速率配置以及服务器的组件配置上。在选择交换机,特别是核心层和汇聚层交换机,一定要根据学校的现状及未来五年的发展,选择交换机的端口类型和速率,即立足于现在的千兆,也能滿足将来万兆需求。核心层设备采用持IRF的多台s9500系列设备可互相连接起来形成一个 “联合设备”称为一个Fabric,这台“联合设备”主备成员间采用负载分担的方式,能提高资源利用率,IRF能使多台设备只需配置一次效率高,用户还可以通过任意成员设备的接口来对系统进行统一管理, 在扩展性方面将组成 Fabric 的每个设备称为一个 Unit,多个Unit组成Fabric后,无论在管理上还是在使用上,就成为了一个整体。它既可以随时通过增加 Unit 来扩展设备的端口数量和交换能力,从而大大提高了设备的可扩展性。
2.2 IP 地址的规划
网络IP地址规划的好坏,直接影响网格的性能、扩展和管理,可靠性也必将影响网络的进一步发展。考虑到路由聚合、子网划分、路由器路由表汇总诸多因素在进行IP地址规划时必须遵循以下分配原则:
本校园IP地址规划在上述原则指明导下一方面采用静态私有地址,另一方面在内部架设DHCP服务器采取动态IP地址分配减少管理员的工作量,并做为静态分案的补充,随着大量多媒体应用的出现,在网络规模逐渐扩大,用户数量持续激增的情况下,要求网络有极佳的扩展性能,可随应用升级逐步平滑升级到万兆骨干连接。建设数字校园的项目团队应提早进行IPv6的技术储备,为校园网的升级打造基础。
3 结束语
在校园网络规划设计中要做到能适应较长时期学校和网络技术的发展,前瞻性和可持续发展性,在可靠性方面除注重计算机网络的设计工作之外,还要积极学习采用新技术,需要注意的是在此过程中要综合考量新技术的采用,从而有效保障和提高校园计算机网络的可靠性,保障长时间无故障运行。
参考文献
[1] 李伟. 基于IRF技术的万兆校园网设计.《湖南工业大学学报》,2008-05-15.
[2] 梁锦锐.论校园网络规划与设计中的扩展性问题.《大众科技》,2011-10-20.
[5] 高等职业院校的网络建设研究. 董亮亮《南京理工大学硕士论文》-2012-05-01.
作者简介:
刘华(1978-),男,河南商丘人,计算机网络,本科,网络工程师。
关键词:校园网络;规划设计;扩展性;可靠性
某高职高专院校新校区峻工,该学院新校区占地面积两千多亩,有4栋教学楼,16栋宿舍楼,1栋图书馆大楼2栋食堂,6个实验室大楼等建筑构成。由于老校区在城市规划中已不覆存在没有与老校区互联的情况,该校院网络规划建设目标是建设一个以办公自动化、计算机辅助教学、现代计算机校园文化为核心,以现代网络技术为依托,技术先进、扩展性强、能覆盖全院主要楼宇的校园主干网络。
1、校园网络系统结构
校园的规模比较大,普通的平面结构难以满足校园网设计的需求;因此选用层次型网络设计模型,由于其结构清晰具有很好的扩展性,易于实现,易于排除故障、冗余性好、易于排除故障易于管理等特点,可充分满足校园网的需求。根据以上分析及学院的现状及未来需求,校园网采用了万兆以太网技术,网络结构分为三层,分别是核心层、汇聚层、接入层。汇聚层通过1000M冗余链路,分别连接到核心设备上,以提高网络的稳定性;接入设备与1000M汇聚层连接具有很好的接入控制能力。
1.1 基于IRF技术的核心层设计
核心层作为校园的交换中枢,必须具备可靠、高性能无阻塞转发能力,能够提供强大的交换能力和冗余备份.并能方便地进行管理和扩充。为此核心层设计采用IRF技术华为S9500系列万兆交换机组成,IRF技术主要包括分布设备管理、分布冗余路和分布链路聚合3方面的技术在外界看来整个FABRIC是一个整体虚拟设备,在某一设备发生故障时路由协议和数据转发都可以不中断。充分保障了核心层的无故障运行能力,并且支持IRF的设备可以使用户的投资得到更多的回报,1:N设备的高扩展、高可靠性。
1.2 汇聚层设计
汇聚层是网络接入层和核心层的“中介”,汇聚层上连接到核心层交换机,下连接入交换机,为终端用户提供高性能的千兆骨干链路,满足接人信息点不断扩充和信息量日益增加的需要。为实现高可靠性汇聚层与核心层的连接采用两条链路与核心层的两台核心交换机连接,以减轻单台核心交换机的负荷,从而实现网络系统的快速、高效、稳定、可靠,因此汇聚层交换机与接入层交换机比较,需要更高的性能,更少的接口和更高的交换速率,根据我院楼宇建筑分布情况,汇聚层交换机架设在学校各教学楼、办公楼、实训楼、图书馆、学生宿舍各楼宇工作间。
1.3 接入层设计
网络中直接面向用户连接或访问网络的部分称为接入层,接入层目的是允许终端用户连接到网络,为用户提供了在本地网段访问应用系统的能力,因此接入层交换机具有低成本和高端口密度特性,在接入层设计上主张使用性能价格比高的设备。另外还要考虑安全方面的需求和管理方面面的功能,(如地址认证、用户认证、计费管理等),以及用户信息收集工作(如用户的IP地址、MAC地址、访问日志等)。
1.4 与国际互联网的互联
申请了两条链路实现跟外网的连接。网络的出口有两条线路,一条线路通过本地教育城域网,一条线路连接到中国电信1000M公用广域网,在其中部署防火墙和路由器实现安全隔离。
另外IRF技术本身是交换网络的简化和优化技术,但在当前网络安全集成一体化的趋势下,以IRF架构来进一步简化网络安全服务的部署,是当前提供可用的最佳实践指导的基本内容。IRF交换网络与防火墙组合设计IRF交换网络与IPS组合设计等等这些技术极大地简化网络设备与安全设备之间的对接设计,进一步提升了网络的可靠性和安全性,另一方面与市公安局网上110 联网,及时处理安全事故能够,下载安全规则。
2 校园网络的扩展性,可靠性设计
可靠性是保障网络无故障运行的能力、可扩展性需求决定了新设计的网络系统适应用户未来发展的能力。网络系统的可靠性、可扩展性主要体现在网络拓扑结构,与络网络设备运用的相应技术,以及 IP 地址的规划等方面。
2.1网络拓扑结构设计以及IRF技术在设备扩展性和可靠性方面的应用
由于校园网规模大,普通的拓扑结构难以满足需要,所以校园网建设采用层次(三层接入层、汇聚层、核心层)模型,将网络划分成不同的层次各个层次各司其职,另外层次模型,结构清晰、性能好、有良好的收缩能力,易于排出故障、冗余性好、易管理等特点有良好的扩展性和可靠性。
在本项目中,由于信息点较多且分布较广,同时基础设施建设还在完善中,为了将来网络的易于管理,扩展和升级,采用基于IRF 技术的多核心结构进行设计,在核心层进行横向整合这种IRF 技术的多核心结构,保证了整个网络的稳定性和解决了端口扩展和交换能力,同时增强了设备的可靠性。
采用基于IRF技术的多核心可靠性主要体现在,各接入层内部通讯量大,无需通过核心处理时(内部网络游戏等),采用层次结构更加合理,更强的预防和控制,对网络攻击、病毒和破坏尽量控制在边缘完成,网络层次结构更加完善、可汇总路由,降低核心路由表项,采用链路冗余设计, IRF主备切换时间实现毫秒级切换,降低了故障中断时间.保证整个网络稳定提供高设备和性能的高可靠性。
网络设备的扩展性主要体现在交换机的端口类型和速率配置以及服务器的组件配置上。在选择交换机,特别是核心层和汇聚层交换机,一定要根据学校的现状及未来五年的发展,选择交换机的端口类型和速率,即立足于现在的千兆,也能滿足将来万兆需求。核心层设备采用持IRF的多台s9500系列设备可互相连接起来形成一个 “联合设备”称为一个Fabric,这台“联合设备”主备成员间采用负载分担的方式,能提高资源利用率,IRF能使多台设备只需配置一次效率高,用户还可以通过任意成员设备的接口来对系统进行统一管理, 在扩展性方面将组成 Fabric 的每个设备称为一个 Unit,多个Unit组成Fabric后,无论在管理上还是在使用上,就成为了一个整体。它既可以随时通过增加 Unit 来扩展设备的端口数量和交换能力,从而大大提高了设备的可扩展性。
2.2 IP 地址的规划
网络IP地址规划的好坏,直接影响网格的性能、扩展和管理,可靠性也必将影响网络的进一步发展。考虑到路由聚合、子网划分、路由器路由表汇总诸多因素在进行IP地址规划时必须遵循以下分配原则:
本校园IP地址规划在上述原则指明导下一方面采用静态私有地址,另一方面在内部架设DHCP服务器采取动态IP地址分配减少管理员的工作量,并做为静态分案的补充,随着大量多媒体应用的出现,在网络规模逐渐扩大,用户数量持续激增的情况下,要求网络有极佳的扩展性能,可随应用升级逐步平滑升级到万兆骨干连接。建设数字校园的项目团队应提早进行IPv6的技术储备,为校园网的升级打造基础。
3 结束语
在校园网络规划设计中要做到能适应较长时期学校和网络技术的发展,前瞻性和可持续发展性,在可靠性方面除注重计算机网络的设计工作之外,还要积极学习采用新技术,需要注意的是在此过程中要综合考量新技术的采用,从而有效保障和提高校园计算机网络的可靠性,保障长时间无故障运行。
参考文献
[1] 李伟. 基于IRF技术的万兆校园网设计.《湖南工业大学学报》,2008-05-15.
[2] 梁锦锐.论校园网络规划与设计中的扩展性问题.《大众科技》,2011-10-20.
[5] 高等职业院校的网络建设研究. 董亮亮《南京理工大学硕士论文》-2012-05-01.
作者简介:
刘华(1978-),男,河南商丘人,计算机网络,本科,网络工程师。