基于CSPPNet与集成学习的人类蛋白质图像分类方法

来源 :计算机工程 | 被引量 : 3次 | 上传用户:jfskldafkld
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
人类蛋白图像分类的目的是识别蛋白质细胞器中的细胞核浆、核膜等定位标签。针对蛋白质分类数据集大、多标签类别不平衡以及类间差异小等问题,结合CSPPNet与集成学习,提出一种人类蛋白质图像分类方法。该方法构建了粗细结合的CSPPNet模型,且将该模型前几层卷积生成的特征图加入空间金字塔池化层,并与模型后期卷积生成的特征图相结合,同时利用图片的整体特征和局部特征自动检测图片差异,以提高细粒度图像分类问题的精度,再通过集成学习的方法来进一步提升准确率。实验结果表明,相比经典卷积神经网络(CNN),该模型的精
其他文献
基于深度学习的图像融合技术易丢失网络浅层特征信息,难以实现图像的精准识别。提出一种利用全卷积神经网络(FCN)提取特征的红外与可见光图像融合方法。采用非下采样剪切波变换(NSST)对源图像进行多尺度和多方向分解,生成高频子带和低频子带图像,将高频子带输入FCN模型提取多尺度特征,并生成高频子带特征映射图,使用最大加权平均算法完成高频子带的融合,同时采用区域能量和融合策略融合低频子带,对融合后的高频
图像集分类算法种类较多,但多数存在运算繁琐、计算成本高和时效性差的问题。为此,提出一种改进的图像重建与识别算法,利用线性回归分类和共享最近邻子空间分类理论进行图像重建和分类,通过将图像下采样建立的高维空间重建为子空间,避免计算复杂度较高的训练过程。利用各个类别的图像集子空间对测试图像进行回归模型估计,根据回归模型重建测试集中的图像,基于重建图像和原始图像间重建误差最小化法,采用加权投票策略对测试集
回 回 产卜爹仇贱回——回 日E回。”。回祖 一回“。回干 肉果幻中 N_。NH lP7-ewwe--一”$ MN。W;- __._——————》 砧叫]们羽 制作:陈恬’#陈川个美食 Back to yield