论文部分内容阅读
针对非线性、非高斯系统的状态估计问题,该文提出了一种基于统计线性回归的粒子滤波算法。在该算法中,首先对非线性函数基于统计线性回归展开,并利用高斯积分估计回归系数,依此产生重要性密度函数。该密度函数融入了最新的观测信息,扩大了与系统真实后验密度的重叠区域。理论分析和实验结果表明,该算法具有较高的估计精度,与一般的粒子滤波算法相比,有较好的稳定性和较低的计算量。