论文部分内容阅读
针对光照变化情况下多遮挡目标的跟踪准确率差的问题,提出了一种基于优化M-S模型的鲁棒多目标跟踪算法.利用抗噪声性能高的优化M-S模型实现复杂环境下多目标精确识别与提取,降低模糊边缘、噪声的影响;利用区域像素标记方法建立目标和背景的边缘特征,在目标发生相互遮挡情况下也能够提取各个目标独立、完备的边缘特征.为了降低联合粒子滤波的计算复杂度,提高跟踪实时性,提出了简化联合滤波跟踪模型.仿真实验证明了该算法的正确性和有效性,与经典的差分跟踪算法、基于颜色特征的跟踪算法比较,对噪声边缘和变化光照环境敏感性降低