论文部分内容阅读
针对基于BP神经网络的刀具寿命预测中存在参数数量多、优化工作量复杂、网络参数主观确定等较多预测精度的问题,提出一种改进广义回归神经网络预测模型AGA-GRNN,该模型运用自适应遗传算法(AGA)优化光滑因子.经实例验证,相较于交叉验证法和遗传算法优化的GRNN预测模型,AGA—GRNN刀具寿命预测模型在参数优化效率和寿命预测精度上均较高,本刀具寿命预测模型的构建为实现制造系统中智能刀具调度提供了基础.