Method of Soft-Sensor Modeling for Fermentation Process Based on Geometric Support Vector Regression

来源 :Journal of Donghua University(English Edition) | 被引量 : 0次 | 上传用户:kooksnake
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The soft-sensor modeling for fermentation process based on standard support vector regression(SVR) needs to solve the quadratic programming problem(QPP) which will often lead to large computational burdens, slow convergence rate, low solving efficiency, and etc. In order to overcome these problems, a method of soft-sensor modeling for fermentation process based on geometric SVR is presented. In the method, the problem of solving the SVR soft-sensor model is converted into the problem of finding the nearest points between two convex hulls (CHs) or reduced convex hulls (RCHs) in geometry. Then a geometric algorithm is adopted to generate soft-sensor models of fermentation process efficiently. Furthermore, a swarm energy conservation particle swarm optimization (SEC-PSO) algorithm is proposed to seek the optimal parameters of the augmented training sample sets, the RCH size, and the kernel function which are involved in geometric SVR modeling. The method is applied to the soft-sensor modeling for a penicillin fermentation process. The experimental results show that, compared with the method based on the standard SVR, the proposed method of soft-sensor modeling based on geometric SVR for fermentation process can generate accurate soft-sensor models and has much less amount of computation, faster convergence rate, and higher efficiency. The soft-sensor modeling for fermentation process based on standard support vector regression (SVR) needs to solve the quadratic programming problem (QPP) which will often lead to large computational burdens, slow convergence rate, low solving efficiency, and etc. In order to overcome the problems, a method of soft-sensor modeling for fermentation process based on geometric SVR is presented. In the method, the problem of solving the SVR soft-sensor model is converted into the problem of finding the nearest points between two convex hulls ( Then, a swarm energy conservation particle swarm optimization (SEC-PSO) algorithm is proposed to seek the optimal parameters of the augmented training sample sets, the RCH size, and the kernel function which are involved in geometric SVR modeling. The method is applied to the soft-sensor mode The experimental results show that, compared with the method based on the standard SVR, the proposed method of soft-sensor modeling based on geometric SVR for fermentation process can generate accurate soft-sensor models and has much less amount of computation, faster convergence rate, and higher efficiency.
其他文献
智力风格是人们所偏好的信息加工和任务处理的方式,影响着人们在不同学习情境下的学习方式、策略和效果.文章提出了根据学生的四种类型的智力风格确定案例教学中的四种不同的
在第五个全民国家安全教育日之际,国家安全部新闻办公布了一批危害国家安全典型案件.国家安全部相关负责人提醒,境外间谍情报机关一直以我军队和军工企业、国防科研院所、涉
期刊
当今信息传播通过互联网,已经突破了物理空间和时间的藩篱,同时,在线教育让知识传播有了的新渠道——“慕课”(MOOC,Massive Open Online Course的缩写),一种针对大众的大规
我喜爱那一身绿色的戎装,喜爱那英俊飒爽的军姿,喜爱那雷厉风行的作风,喜爱那纪律严明的军营……rn从小时候看到军人,尤其是在“文革”时,中学实行军事管理,接触到军人,我就
期刊
在现代企业制度下,公司的所有权和经营权分离,委托人和代理人的利益不一致。如何通过制度安排和设计来监督、约束和激励代理人,使委托人和代理人的目标函数趋于一致是公司治
本文通过对荣华二采区10
期刊
注:陕西省教育学会2013年度一般课题.提高小学生计算能力研究  计算是数学知识中的重要内容之一,而对学生计算能力的培养又是数学教学中的重中之重,数学计算能力是一项基本的数学能力,包含了计算的准确率和正确率两个方面。  作为一名小学数学教师,小学数学教学中计算教学的有效性问题便被凸现出来,现行的课堂教学现状在经过多年来教改洗礼之后,虽然有所改观,但仍然令人担忧。所以我们不得不再次考虑如何提高小学生
摘 要: 在高三数学复习阶段,教师要认真解读各地高考考试说明,探究教学策略,立足新课标,着重做好以下三个方面的工作:一是抓实;二是求活;三是创新。  关键词: 高考数学复习 抓实 求活 创新  一、抓实  (一)认真制订计划。  在《考试说明》和高考录取方案出台后,要作适度调整。从一轮复习到二轮时的专题讲座,以及填空题专项训练,考点突破训练,模拟测试和解题应试方法和技巧的指导,提前计划、布置,做到
随着经济和科技的迅猛发展,市场经济下企业与企业之间的竞争加剧,它不再是单个企业与单个企业之间的竞争,而是供应链与供应链之间的竞争。供应链涉及围绕着核心企业之外的供应商、分销商、零售商及物流提供商等等,现代供应链的复杂性不断增加,供应链各个体间的相互依存性也在不断增强,当企业在享受供应链给自己带来的快捷、便利、高效之时,同时也在承担着随时面临供应链断裂的风险,供应链其实是一条非常脆弱的链条,它的任何
在当今的互联网时代,游戏版块已经成为各大互联网企业竞争的主要业务之一。然而,2016年证监会发布的《2015年度上市公司年报会计监管报告》中指出,上市公司针对网络游戏收入确认