国家自然科学基金改革与2020年度信息领域资助情况

来源 :智能系统学报 | 被引量 : 0次 | 上传用户:jklgfdjligjregjmreji
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
国家自然科学基金推动明确“资助导向”、优化学科布局、负责任计贡献讲信誉的同行评审等改革任务,深化改革措施。鼓励探索突出原创,提升原创能力;拓展社会投入加大联合基金资助,促进基础研究与应用互动;成立科学传播与成果转化中心,探索研究成果贯通机制。基于信息科学特点,关注科学仪器研制项目,促进基础工具研究;加强信息技术与教育结合,鼓励AI机制机理创新探索研究,促进AI技术创新应用。
其他文献
当前深度学习大都基于大量数据通过构建深层次的网络实现自动识别,但在很多场景中难以获得大量的样本数据。针对这一问题,提出一种基于孪生变分自编码器(siamese variational auto-encoder,S-VAE)的小样本图像分类方法。通过变分自编码器提取原始训练数据的高层语义特征,然后由两个训练好的变分自编码器的编码器部分组建孪生网络的输入结构,最后通过分类器对样本进行识别。变分自编码器
汽车工业面临着环境保护和安全性的问题,因此汽车轻量化在解决燃油效率、CO2减排和环境友好等问题起着关键的作用。先进高强钢是解决车身减重、保证安全性、防腐和降低成本等问题最具有应用前景的金属材料。介绍了国内外钢铁企业近年来在汽车用钢方面的技术进展,结合具体实例,重点介绍了高强度钢板的发展情况以及EVI销售新模式。
由于人脸面部结构复杂,不同人脸之间结构特征相似,导致难以提取到十分适合用于分类的人脸特征,虽然神经网络具有良好效果,并且有很多改进的损失函数能够帮助提取需要的特征,但是单一的深度特征没有充分利用多层特征之间的互补性,针对这些问题提出了一种基于神经网络多层特征信息融合的人脸识别方法。首先选择ResNet网络结构进行改进,提取神经网络中的多层特征,然后将多层特征映射到子空间,在各自子空间内通过定义的中
针对未知环境下多机器人主动SLAM(simultaneous localization and mapping)存在不能完全遍历环境、定位精度不理想等问题,本文基于EKF-SLAM(extended Kalman filter-simultaneous localization and mapping)算法提出一种多机器人主动SLAM算法。通过引入吸引因子,增强多机器人系统之间的交流,提升机器人自身定位精度与环境建图精度,同时又引导多机器人团队进行探索环境。当同一地标被多个机器人观测到,采用凸组合融合方法
在推荐系统中,为了充分表达用户反馈数据内部的相互依赖和序列性,准确提取用户的长期/一般偏好、应对数据的动态性,本文提出了一种分期序列自注意力网络(long-term&short-term sequential self-attention network,LSSSAN)进行序列推荐。模型采用自注意力机制和GRU捕捉了用户反馈数据之间的相互依赖和序列性;模型采用注意力机制为不同反馈数据赋予不同权重以动态捕捉重点信息,同时考虑了上下文的动态性;模型基于用户的长期反馈数据,准确表达了用户的长期/一般偏好
针对跟踪领域内由于图像模糊而导致跟踪失败的问题,提出一种结合模糊特征检测的鲁棒核相关滤波(kernelized correlation filter, KCF)跟踪法。首先,将尺度不变特征变换(scale invariant feature transform, SIFT)描述子与局部二值模式(local binary pattern, LBP)算法结合,提取模糊图像中的特征点,并采用圆形邻域描述
针对跨年龄人脸验证任务中面部纹理、形状特征变化的问题,提出一种基于双编码平均局部二值模式(dual-coded average local binary pattern,DCALBP)与深度学习算法相结合的多任务人脸验证算法。首先,使用多任务卷积神经网络(multi-task convolutional neural network,MTCNN)对人脸检测图片进行预处理,引入双编码平均局部二值模式
若在建模时存在目标,部分目标像素会进入背景模型,会在检测时产生"鬼影"。为了有效抑制"鬼影",提出一种利用混合高斯和拓扑结构(Gaussian mixture model and topological structure,GMMT)的人体"鬼影"抑制算法。算法分为两个阶段,背景建模阶段采用双通道建模,通道一利用混合高斯模型进行预检测,接着利用拓扑结构将分散的人体目标连接获得完整的目标并取其外接矩
针对Faster R-CNN算法对多目标、小目标检测精度不高的问题,本文提出一种基于Faster R-CNN的多任务增强裂缝图像检测(Multitask Enhanced Dam Crack Image Detection Based on Faster R-CNN, ME-Faster RCNN)方法。同时提出一种基于K-means的多源自适应平衡TrAdaBoost的迁移学习方法 (multi
为解决人工智能中莫拉维克悖论提出的问题,基于因素空间思想提出一种人工智能样本选择策略.首先通过因素空间论证了莫拉维克悖论的证确定.其次论述了人的选择过程即是比较过