论文部分内容阅读
为了提供个性化推荐,推荐系统会将用户和物品分别表达为用户偏好向量和物品特征向量。物品特征向量中不同维度分别对应物品不同的特征。用户偏好向量中各维度表示用户对物品对应维度(特征)的喜好程度。目前大部分的推荐算法都假设为对于不同物品、同一用户的偏好向量是相同的。然而在现实生活中,该假设是不成立的。为此,提出一种结合注意力机制的深度学习模型,其能根据不同的用户-物品对,相应地学习到一个注意力权重向量,最终达到动态调整用户偏好向量的目的。在3组公开数据集上进行对比实验,以预测评分的均方误差(MSE)作为评估