论文部分内容阅读
【摘要】数学概念是数学基础知识的基石,几何概念是学习几何的基础,在几何学习过程中,教师要高度重视几何概念的教学,讲清几何概念,使学生正确理解和灵活运用几何概念,这无疑是提高教学质量和培养学生能力的前提条件.几何概念揭示了一类图形的特性,正确理解几何概念,不能仅仅会背诵概念的定义,更要能正确画出和识别表示概念的图形,熟练掌握概念的标注法和读法,还要会用概念正确判断、推理、计算.怎样学好几何概念呢?第一,几何概念大多来自生产、生活实践,因此,学习几何概念要紧密联系实际。
【关键词】学习方法 初中数学 几何概念
【中图分类号】G633.6 【文献标识码】A 【文章编号】2095-3089(2015)05-0133-01
几何教学在我区推广进展与全国相比比较缓慢,在教师中自发学习和应用为主,没有形成学科应用氛围,没有产生规模效应与资源聚集。几何教学目前在我区还在探索阶段,几何教学的优势没有得到充分的发挥。
1.研究目标
在学科本原性上,通过工作室的项目研究,掌握几何教学的教学设计的基本内容和要求。掌握运用几何教学规律,生动、形象的展示数学知识的发生、发展和形成过程。积极推进数学课堂教学改革,改善数学教学的过程。在教学研究上,通过项目研究,构建几何教学的学术与教研氛围。梳理学科中几何教学的知识点,为几何教学提供真实的支持和展示交流平台。
1.1课题背景分析
作为中学数学课程中长期保留欧氏几何的国家之一,尽管我国在几何教学方面有着丰富的经验,但与代数教学相比,教师普遍觉得难教,学生觉得难学。即使是在进行了相当大的教学投入后,仍有许多学生摸不着门道,出现解题思路跳跃,解答过程凌乱的现象。事实上,初中学生数学学习水平出现明显的两极分化现象,很多都出现在初二平面几何的教学中。这种分化不仅仅取决于学生的智力因素,更与我们的几何课堂教学息息相关。
1.2互动式教学
几何是初中数学课程的重要组成部分,对学生逻辑思维能力和推理能力的形成具有重要的作用.然而,几何内容是教师在日常教学中感到比较困难的部分,也是学生出现问题比较多的部分,其中最突出的问题是对几何定理的理解和运用感到困难.将“传授式”教学与“活动式”教学进行有效结合的教学模式,是当前国内外比较推崇的一种教学方式。
1.3几何数学知识
在问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。按基本图形添辅助线举例如下:
(1)平行线是个基本图形:
当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线。
(2)等腰三角形是个简单的基本图形:
当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
2.课题研究的主要内容
随着修订后的义务教育阶段课标的全面实施,人人学有价值的数学已深入人心.近几年来,动点问题频频出现在各地中考、竞赛试卷中.这类试题突出了对学生基本数学素质的测试,加强了探究和创新意识,培养了学生灵活运用知识解决实际问题能力,对学生思维能力的提高有较大帮助,解这类题目要“以静制动”,即把动态问题,变为静态问题来解.动点运动型问题一般就是在三角形、四边形等一些几何图形上或函数图象上,设计一个或几个动点,并对这些点在运动变化的过程中相伴随着的等。
2.1几何教学重要组成部分
部分学生对现在中考中比较流行的几何中的动态关系老是把握不好,其实我们可以用几何画板这个辅助教学软件去研究他們之间的关系,它的功能相当强大,这就要求我们数学教师平时在教学中要善于利用几何画板独特的功能引导和启发学生,开发好他们的动态数学思维。
2.2几何教学难点
几何是整个中学数学教学内容的重要部分,几何课在整个初中新课程中仍是难点,是瓶颈。我们发现,普遍存在的现象是数学成绩好的学生必定几何成绩好,而往往学生也就是因为几何课程开始出现分化,由怕几何——怕数学——厌数学——最终放弃数学。为了让这种情况得到扭转,我们深入地进行了集体备课,开展了一系列教学活动。
2.3几何在初中数学几何教学中的应用
连接四边形的对角线,把四边形的问题转化成为三角形来解决。
例如:如图1:AB∥CD,AD∥BC 求证:AB=CD。
分析:图为四边形,我们只学了三角形的有关知识,必须把它转化为三角形来解决。
证明:连接AC(或BD)
在△ABC与△CDA中∵AB∥CD AD∥BC (已知)∴∠1=∠2,∠3=∠4(两直线平行,内错角相等)
∵∠1=∠2(已证)AC=CA(公共边)∠3=∠4(已证)
图1
∴△ABC≌△CDA (ASA) ∴AB=CD(全等三角形对应边相等)
3.结语
数学几何总复习阶段,是教师进行几何教学和学生进行系统学习几何知识的最后阶段。通过新教材总复习,总结出几点经验:回归课本,加强“双基”教学,全面系统复习基础知识;“解题”训练能全面地培养学生的数学综合能力;搞好专题复习,综合运用知识,培养学生数学能力。初中数学的教学方式随着新课改发生了很大的改变。在初中数学教学中,几何部分的知识具有其特殊性,对几何的教学和学习方法都不同于代数数学知识,它要求学生要有一定的空间想象力和立体思维,所以在初中几何中经常出现教师学生共同感叹几何部分“老师难教,学生难学”的情况。要改变这样的现状,使学生能更好地掌握初中数学几何部分的知识,就要求教师要在平时的教学实践中多思考问题、总结经验,改革创新初中数学几何的教学方法,培养学生的几何兴趣,开拓学生的几何思维,尽教师最大的努力来帮助学生更好地掌握几何知识,提升整体数学水平。
参考文献:
[1]孔忠娣.初中数学几何教学有效策略的分析.数学学习与研究:教研版.2012.27-27
[2]鲍建生.几何的教育价值与课程目标体系[J].教育研究,2000(4):53-55.
【关键词】学习方法 初中数学 几何概念
【中图分类号】G633.6 【文献标识码】A 【文章编号】2095-3089(2015)05-0133-01
几何教学在我区推广进展与全国相比比较缓慢,在教师中自发学习和应用为主,没有形成学科应用氛围,没有产生规模效应与资源聚集。几何教学目前在我区还在探索阶段,几何教学的优势没有得到充分的发挥。
1.研究目标
在学科本原性上,通过工作室的项目研究,掌握几何教学的教学设计的基本内容和要求。掌握运用几何教学规律,生动、形象的展示数学知识的发生、发展和形成过程。积极推进数学课堂教学改革,改善数学教学的过程。在教学研究上,通过项目研究,构建几何教学的学术与教研氛围。梳理学科中几何教学的知识点,为几何教学提供真实的支持和展示交流平台。
1.1课题背景分析
作为中学数学课程中长期保留欧氏几何的国家之一,尽管我国在几何教学方面有着丰富的经验,但与代数教学相比,教师普遍觉得难教,学生觉得难学。即使是在进行了相当大的教学投入后,仍有许多学生摸不着门道,出现解题思路跳跃,解答过程凌乱的现象。事实上,初中学生数学学习水平出现明显的两极分化现象,很多都出现在初二平面几何的教学中。这种分化不仅仅取决于学生的智力因素,更与我们的几何课堂教学息息相关。
1.2互动式教学
几何是初中数学课程的重要组成部分,对学生逻辑思维能力和推理能力的形成具有重要的作用.然而,几何内容是教师在日常教学中感到比较困难的部分,也是学生出现问题比较多的部分,其中最突出的问题是对几何定理的理解和运用感到困难.将“传授式”教学与“活动式”教学进行有效结合的教学模式,是当前国内外比较推崇的一种教学方式。
1.3几何数学知识
在问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。按基本图形添辅助线举例如下:
(1)平行线是个基本图形:
当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线。
(2)等腰三角形是个简单的基本图形:
当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
2.课题研究的主要内容
随着修订后的义务教育阶段课标的全面实施,人人学有价值的数学已深入人心.近几年来,动点问题频频出现在各地中考、竞赛试卷中.这类试题突出了对学生基本数学素质的测试,加强了探究和创新意识,培养了学生灵活运用知识解决实际问题能力,对学生思维能力的提高有较大帮助,解这类题目要“以静制动”,即把动态问题,变为静态问题来解.动点运动型问题一般就是在三角形、四边形等一些几何图形上或函数图象上,设计一个或几个动点,并对这些点在运动变化的过程中相伴随着的等。
2.1几何教学重要组成部分
部分学生对现在中考中比较流行的几何中的动态关系老是把握不好,其实我们可以用几何画板这个辅助教学软件去研究他們之间的关系,它的功能相当强大,这就要求我们数学教师平时在教学中要善于利用几何画板独特的功能引导和启发学生,开发好他们的动态数学思维。
2.2几何教学难点
几何是整个中学数学教学内容的重要部分,几何课在整个初中新课程中仍是难点,是瓶颈。我们发现,普遍存在的现象是数学成绩好的学生必定几何成绩好,而往往学生也就是因为几何课程开始出现分化,由怕几何——怕数学——厌数学——最终放弃数学。为了让这种情况得到扭转,我们深入地进行了集体备课,开展了一系列教学活动。
2.3几何在初中数学几何教学中的应用
连接四边形的对角线,把四边形的问题转化成为三角形来解决。
例如:如图1:AB∥CD,AD∥BC 求证:AB=CD。
分析:图为四边形,我们只学了三角形的有关知识,必须把它转化为三角形来解决。
证明:连接AC(或BD)
在△ABC与△CDA中∵AB∥CD AD∥BC (已知)∴∠1=∠2,∠3=∠4(两直线平行,内错角相等)
∵∠1=∠2(已证)AC=CA(公共边)∠3=∠4(已证)
图1
∴△ABC≌△CDA (ASA) ∴AB=CD(全等三角形对应边相等)
3.结语
数学几何总复习阶段,是教师进行几何教学和学生进行系统学习几何知识的最后阶段。通过新教材总复习,总结出几点经验:回归课本,加强“双基”教学,全面系统复习基础知识;“解题”训练能全面地培养学生的数学综合能力;搞好专题复习,综合运用知识,培养学生数学能力。初中数学的教学方式随着新课改发生了很大的改变。在初中数学教学中,几何部分的知识具有其特殊性,对几何的教学和学习方法都不同于代数数学知识,它要求学生要有一定的空间想象力和立体思维,所以在初中几何中经常出现教师学生共同感叹几何部分“老师难教,学生难学”的情况。要改变这样的现状,使学生能更好地掌握初中数学几何部分的知识,就要求教师要在平时的教学实践中多思考问题、总结经验,改革创新初中数学几何的教学方法,培养学生的几何兴趣,开拓学生的几何思维,尽教师最大的努力来帮助学生更好地掌握几何知识,提升整体数学水平。
参考文献:
[1]孔忠娣.初中数学几何教学有效策略的分析.数学学习与研究:教研版.2012.27-27
[2]鲍建生.几何的教育价值与课程目标体系[J].教育研究,2000(4):53-55.