论文部分内容阅读
传统的LMS算法,由于其步长因子μ是事先指定的固定值,因而在迭代过程中不能随着估计误差e(n)来进行相应的调整,所以其收敛性完全由初始条件和步长决定。为了改变这种状况,文章提出了一种步长因子μ(n)随时间变化的LMS算法,其收敛速度快于LMS和NLMS,具有较小的失调,将本算法应用于自适应预测系统,Matlab仿真实验结果与理论分析一致。