论文部分内容阅读
Thermomechanical cyclic quenching and tempering (TMCT) can strengthen steels through a grain size reduction mechanism. The effect of TMCT on microstructure, mechanical, and electrochemical properties of AISI 1345 steel was investigated. Steel samples heated to 1050℃, rolled, quenched to room temperature, and subjected to various cyclic quenching and tempering heat treatments were named TMCT-1, TMCT-2, and TMCT-3 samples, respectively. Microstructure analysis revealed that microstructures of all the treated samples contained pack-ets and blocks of well-refined lath-shaped martensite and retained austenite phases with varying grain sizes (2.8–7.9 μm). Among all the tested samples, TMCT-3 sample offered an optimum combination of properties by showing an improvement of 40% in tensile strength and reduced 34% elongation compared with the non-treated sample. Nanoindentation results were in good agreement with mechanical tests as the TMCT-3 sample exhibited a 51% improvement in indentation hardness with almost identical reduced elastic modulus compared with the non-treated sample. The electrochemical properties were analyzed in 0.1 M NaHCO3 solution by potentiodynamic polarization and electrochemical imped-ance spectroscopy. As a result of TMCT, the minimum corrosion rate was 0.272 mm/a, which was twenty times less than that of the non-treated sample. The impedance results showed the barrier film mechanism, which was confirmed by the polarization results as the current dens-ity decreased.