论文部分内容阅读
为了研究如何结合移动检测数据来确定交叉口排队长度,并以此来衡量交通拥堵程度的问题,利用车辆行驶轨迹,分析了通过交叉口车辆的排队特点.根据车辆在队列中的不同排队位置,分车辆通过交叉口时所存在的A,B,C这3种位置,建立了面向延误最小的排队长度估计模型.其中,通过虚拟线圈检测器后开始减速停止在停车线前的A位置车辆排队估计模型基于基本延误模型;减速进入虚拟线圈检测区域停车的B位置车辆排队估计模型基于简化车辆跟驰模型,对可获得车辆行驶轨迹的网联车减速过程进行了重建;减速停止在虚拟线圈检测器前的C位置车辆排队估计模型基于LWR消散模型以及交通流理论算法,并利用网联车车辆行驶轨迹数据进行了加速过程的重建.在此基础上,根据不同位置车辆与队尾网联车的距离不同,对其到达率赋予不同的权重,计算总的排队长度.最后,通过图新地球地图软件投影并筛选车辆在案例交叉口的车辆行驶轨迹,利用微观交通仿真软件VISSIM对本研究的模型进行仿真验证.结果表明,排队长度估计模型与真值的最大误差为12.4%,最小为2.2%,平均误差为8.75%,方差为12.595%2,绝对与相对误差均保持在可接受范围以内,说明基于车辆行驶轨迹的信号交叉口排队长度估计模型能够较为有效地估计城市道路交叉口的排队长度.