论文部分内容阅读
建立目标机动模型是传感器目标跟踪数据处理中的一个重要环节.为了克服"当前"统计模型对非机动目标和常加速模型对机动目标跟踪性能较差的缺陷,通过对"当前"统计(CS)模型的分析研究,在常加速(CA)模型的基础上提出了一种基于强跟踪滤波器的自适应常加速模型及跟踪算法(ACA-STF).该算法利用速度预测估计与实时速度估计间的偏差进行自适应方差调整,并通过引入强跟踪滤波器(STF)的渐消因子,实时调节滤波器增益,从而提高了跟踪精度,增强了系统对突发机动的自适应跟踪能力.理论分析和仿真结果表明对于非机动和机动目标,该算法比"当前"统计模型算法具有更高的跟踪精度.