论文部分内容阅读
粒子滤波算法是一种基于贝叶斯估计的蒙特卡罗方法,适用于非线性非高斯系统的分析,被广泛应用于跟踪、定位等问题的研究中。为了解决粒子滤波算法在重采样后,丧失粒子多样性的问题,本文在粒子滤波算法的重采样步骤后,加入了马尔可夫链蒙特卡罗(Markov Chain Monte Carlo,简称MCMC)移动步骤,增加粒子的多样性。利用粒子滤波算法和MCMC粒子滤波算法对目标跟踪问题进行了仿真,并且通过分析仿真实验结果,比较了两种算法的性能,结果说明加入MCMC粒子滤波算法的性能优于粒子滤波算法。