论文部分内容阅读
粒子群优化算法在求解复杂函数时,存在收敛速度慢、求解精度不高、易陷入局部最优点等问题。为此,提出一种自适应混沌粒子群优化算法。在基本粒子群算法中引入混沌变量,当算法陷入早熟收敛时进行混沌搜索,同时引入非线性递减的惯性权重。实验结果表明,该算法具有较快的收敛速度和较高的收敛精度,能有效避免早熟收敛问题。