论文部分内容阅读
自组织理论是基于神经网络和计算机科学的迅速发展而产生和发展起来的。它将黑箱思想、生物神经元方法、归纳法、概率论、数理逻辑等方法有机地组合起来。其主要思想是通过简单的初始输入(局部变量)的交叉组合产生第一代中间候选模型,再从第一代中间候选模型中选出最优的若干项组合而产生第二代中间候选模型,重复这样一个产生、选择和遗传进化过程,使模型复杂度不断增加,直到选出最优复杂度模型为止。本文利用自组织方法进行数据筛选和建立税收预测模型,并在数据筛选基础上建立线性回归预测模型和BP神经网络预测模型,然后结合时间序列的预测