论文部分内容阅读
目标识别一直是人工智能领域的热点问题. 为了提高目标识别的效率,提出了基于卷积神经网络多层特征提取的目标识别方法. 该方法将图像输入卷积神经网络进行训练,在网络的每个全连接层分别进行特征提取,将得到的特征依次输入到分类器,对输出结果进行比较. 选取经过修正线性单元relu函数激活的低层全连接层作为特征提取层,比选取高层全连接层特征提取的识别率高. 本文构建了办公用品数据集,实现了基于卷积神经网络多层特征提取的办公用品识别系统. 选择AlexNet卷积神经网络模型的relu6层作为特征选取层,选择最优训练图