论文部分内容阅读
机器学习在图像识别领域的成功应用,为农作物品种的自动识别提供了一种新的思路。为了全面了解机器学习在农作物品种识别中的应用现状,把握农作物品种识别的发展趋势和研究方向,本文归纳了农作物图像的常用获取方法,分析了光谱图像和RGB图像结合机器学习方法识别农作物品种的研究现状。基于RGB图像进行农作物品种识别研究起步较早,图像获取成本较低,识别率一般;基于高光谱图像进行农作物品种识别研究近年来发展迅速,识别精度较高,但图像获取成本较高,且易受环境因素影响。通过总结,指出了农作物品种识别研究中存在的问题,认为