结合双注意力机制和级联思想的肝肿瘤分割

来源 :小型微型计算机系统 | 被引量 : 0次 | 上传用户:cse_gzzhu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对肝脏肿瘤存在的分割难点结合级联网络的思想,提出了一种融合了双注意力机制和U-Net架构优势的肝脏肿瘤分割网络(CDA-Net).首先,训练第一个DA-Net来实现肝脏的粗略分割;然后将第一阶段的分割结果与原始CT图做与操作,提取感兴趣区域,并将其输入第2个DA-Net实现肝肿瘤的精确分割;最后利用条件随机场对分割结果进行边缘约束,优化分割结果.在LiTS2017数据集上对模型进行训练及测试,平均Dice指标为0.658.实验结果表明,本文提出的方法具有较好的精度,证实了其对肿瘤分割的有效性.
其他文献
随着深度学习技术的快速发展,模型的结构越来越复杂,需要的计算资源和存储资源也越来越多.单核计算设备通常无法满足深度学习的需求,通常将深度学习模型部署在众核和分布式计
本文提出一种新型的带有注意力模块的反卷积一阶检测器,简称做DSSDA(Deconvolutional Single Shot Detector with Attention M odule).整个网络架构主要借鉴DSSD模型,在卷积层后加反卷积上采样进行特征融合,再在融合的特征后嵌入注意力模块,以帮助网络将注意力放在目标上并抑制不重要的信息.注意力模块包括通道注意力和空间注意力两个子模块,作用分别
3D手势姿态估计是计算机视觉领域一个重要的研究方向,在虚拟现实、增强现实、人机交互、手语理解等领域中具有重要的研究意义和广泛的应用前景.深度学习技术已经广泛应用于3D手势姿态估计任务并取得了重要研究成果,其中深度图像具有的深度信息可以很好地表示手势纹理特征,深度图像已成为手势姿态估计任务重要数据源.本文首先全面阐述了手势姿态估计发展历程、常用数据集、数据集标记方式和评价指标;接着根据深度图像的不同
针对现有的交通标志识别算法在识别率和识别速度等方面存在的不足,在空间不变性方面还可以进一步利用的问题,提出一种基于空间变换网络和注意力机制的交通标志识别算法.首先将交通标志图片经过数据增强,然后输入到空间变换网络中,使得图片具有空间不变性,经过卷积层提取特征和池化层降维,提取图片抽象语义信息进行分类,在模型中加入改进的注意力机制模块,在通道和空间两个维度对特征图施加注意力机制,实现交通标志的准确快
针对传统阿尔茨海默症辅助诊断算法使用单一模态数据,以及丢弃缺失模态样本的问题,本文提出了一种基于非对称多模态学习的阿尔茨海默症辅助诊断算法.本算法包含两阶段任务,第1阶段利用磁共振成像(Magnetic Resonance Imaging,M RI)和正电子发射断层扫描成像(Positron Emission Tomography,PET)之间的潜在联系,使用3D循环生成对抗神经网络,训练出一个特
针对传统视觉背景提取算法(visual background extraction algorithm,ViBe)在室内监控条件下容易产生"鬼影"现象以及阴影难以消除的问题,提出一种针对人物室内活动的改进ViBe算法.针对容易引入"鬼影"现象,采用一种外接矩形像素直方图的方法,利用运动目标区域直方图与邻域背景区域直方图相似度匹配,快速检测"鬼影"现象,设置鬼影点像素值并参与背景模型更新,从而快速消
针对低光照图像增强任务中缺少正常光照的参考图像问题,提出了一种基于生成对抗网络的无参考低光照图像增强方法,即在不需要参考图像的条件下可训练得到低光照图像增强模型.为实现低光照图像增强过程中保留图像细节和全局一致性,本文了提出了改进的基于空间和通道的自注意力融合模块以及图像全局信息感知的自适应实例化归一化模块.由于训练过程中无法获得参考图像,本文进一步提出基于图像自身信息感知的自颜色损失函数,从而提
在微表情自动识别任务中,浅层卷积神经网络和深层网络相比更好地改善了网络训练过拟合的情况,但是多数浅层卷积神经网络存在输入特征单一和提取高维有效特征能力不足的问题.针对上述问题本文同时使用图像的灰度特征和运动特征表征原图像,并且提出了一种改进双流浅层卷积神经网络(Enhanced Dual-stream Shallow Convolutional Neural Network,EDSSNet)用于微
许多推荐技术(如协同过滤)存在以下不足,降低了用户的体验满意度和忠诚度:1)忽略了“用户兴趣和商品属性会随时间而改变”这一事实;2)过度追求预测准确性而牺牲了推荐多样性和新颖性.为此,提出一种能动态适应上述变化,同时优化推荐准确度、多样度和新颖度的互动式推荐系统.主要步骤:1)采用理想点法构造多目标优化函数;2)收集用户反馈信息,及时地更新推荐策略;3)基于多臂赌博机构建互动式推荐框架.实验表明,经过与用户不断地互动推荐,该系统的平均列表准确度、多样度和新颖度都在逐步提升.
针对机器人SLAM系统,在实际场景或低纹理场景中提取的有效特征点数量少,使得系统初始化效果差和定位精度不高的问题,提出了一种基于点线特征和IMU信息融合的双目惯导SLAM系统(Stereo Visual-Inertial state estimator based on optimized ORB point feature and line feature,OOL-VINS).首先,对双目视觉进