论文部分内容阅读
针对在云计算环境下光纤通信海量数据存在的拥塞问题。提出一种基于发射基元直接序列扩频的云光纤通信海量数据疏导模型。在云计算环境下对光纤激光通信海量数据进行特征数据融合处理,对融合后的数据采用自适应级联匹配滤波算法进行抗干扰处理,对滤波输出的数据采用模糊C均值聚类算法实现数据聚类,实现云计算环境下光纤通信中的海量数据疏导。试验分析得出,采用该模型进行海量通信数据疏导处理后,能有效提高光纤激光通信的信道均衡性能,抗干扰能力较强,降低了通信误比特率,改善通信质量。
Aiming at the congestion problem of massive data of optical fiber communication in cloud computing environment. This paper proposes a massive data grooming model based on direct sequence spread of transmission primitives. In the cloud computing environment, mass data fusion of fiber laser communication is carried out, anti-interference processing is applied to the fused data by adaptive cascade matching filtering algorithm, and fuzzy C-means clustering algorithm is used to realize data aggregation Class, to achieve mass data divergence in optical fiber communication in cloud computing environment. Experimental analysis shows that this model can effectively improve the channel equalization performance of optical fiber laser communication with strong anti-interference ability, reduce bit error rate of communication and improve communication quality.