论文部分内容阅读
针对油田抽油机井故障诊断方法较落后和故障信息采集不充分的问题,提出一种小波变换基神经网络故障诊断系统。它先对输入信号进行离散小波变换,把由Mallat算法得到的多尺度下的离散细节信号作为故障特征,之后将其输入到神经网络进行故障模式分类。为了进一步提高诊断的正确率,一方面对神经网络的结构进行优化,另一方面采用学习率自适应调整的共轭梯度法训练神经网络的权值。对某油田32口故障油井进行诊断,正确率在95%以上,这表明该方法的有效性。