论文部分内容阅读
分别利用用户名和微博文本对个人与非个人两种用户类型进行判别,并对不同的特征(例如:字特征、词特征等)进行研究分析;其次,在针对用户名和微博文本的两个分类器的基础上,使用贝叶斯融合方法进行分类器融合,充分利用两种文本分类信息同时进行用户类型判断。实验结果表明此方法可以达到较高的识别准确率,并且分类器融合方法明显优于仅利用用户名或者微博文本的分类方法。