论文部分内容阅读
光子晶体光纤在光通信和超快光学中具有广泛的应用.本文基于描述光子晶体光纤的非线性Schr?dinger方程,利用双线性方法,得到了该方程的双线性形式和解析单孤子解.通过对单孤子解的分析,研究孤子在光子晶体光纤中的传输特性.借助于色散管理的思想,通过改变光子晶体光纤中的群速度色散系数,我们讨论了孤子在不同群速度色散函数情况下的传输状态.如果光子晶体光纤的群速度色散系数为常数,则孤子能保持原有的速度和形状进行传输.如果群速度色散系数选为三角函数,孤子会呈现周期性传输.而当群速度色散系数函数为高斯函数时,孤子表现出局域孤子的特性.此外,如果将群速度色散系数函数定为线性函数,则能在光子晶体光纤中同时实现孤子压缩和放大.本文结论对于光子晶体光纤中的色散管理技术具有重要的理论参考价值.
Photonic crystal fiber has wide applications in optical communication and ultrafast optics.Based on the nonlinear Schr? Dinger equation describing photonic crystal fiber, the bilinear form of the equation and the solution of single soliton solution In this paper, we study the soliton transmission in photonic crystal fiber through the analysis of single soliton solutions.With the idea of dispersion management, by changing the group velocity dispersion coefficient in photonic crystal fiber, we discuss the properties of solitons in different group velocity dispersion functions If the group velocity dispersion coefficient of photonic crystal fiber is constant, the soliton can keep its original velocity and shape to transmit.If the group velocity dispersion coefficient is selected as a trigonometric function, the soliton will show periodic transmission, while when the group When the velocity dispersion coefficient function is a Gaussian function, the soliton exhibits the characteristics of local solitons. In addition, if the group velocity dispersion coefficient function is set as a linear function, the soliton compression and amplification can be realized simultaneously in the photonic crystal fiber. Dispersion management in optical fiber technology has important theoretical reference value.