论文部分内容阅读
针对深度卷积神经网络(CNN)中出现的过度拟合的问题,给出了一种改进的结构,训练阶段采用Dropout正则化,测试阶段采用了模型平均方法且同时考虑了保留概率和池化区域内单元值所占概率。仿真实验表明:在MNIST手写数据库和CMU—PIE的部分图像库中,相同迭代次数及CNN结构下新算法均优于其他方法,不仅能够得到更好的识别率而且更能防止过拟合的问题。