论文部分内容阅读
红外目标识别主要存在以下两个问题:一是红外成像比较模糊,难以提取不变特征;二是红外图像信息含量小,不易发掘有效的描述方法。针对上述问题,提出了一种基于曲率尺度空间(Curvature Scale Space,CSS)角点的仿射不变三角形的检测方法,并利用优选参数的多尺度自卷积(Multi-scale Autoconvolution,MSA)对提取的三角形区域进行描述,最后进行特征匹配实现红外目标识别。实验表明:与其他方法比较,在各种图像变换中,本文方法对红外目标的识别优势显著。